matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Hilfe tip wie geht das
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:33 Mi 13.12.2006
Autor: Dummy86

Aufgabe
Man untersuche, ob folgende Grenzwerte existieren( auch uneigentlich) und berechne diese gegebenenfalss

[mm] a)\limes_{x\rightarrow 1}[/mm]  [mm] \bruch {(x^3+2x^2-10x+7)}{x-1}[/mm]

[mm] b)\limes_{z\rightarrow 0} [/mm] ([mm] \bruch {(exp(2z)-1)}{2z^2}[/mm] - [mm]\bruch {1}{z}[/mm])

[mm] c)\limes_{x\uparrow 0}[/mm]  [mm] \bruch {[x]}{x}[/mm]

[mm] d)\limes_{x\rightarrow\infty}[/mm]  [mm] \bruch {x^{[x]}}{exp(x)}[/mm]

Kann mir einer helfen wie dass geht, also grenzwert bestimmen ist kein problem, aber wie überprüfe ich ob folgende grenzwetre existieren? hat das was mit stetigkeit zu tun?

        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mi 13.12.2006
Autor: celeste16

überprüfe vorher doch bitte noch deine Aufgaben:

bei b) geht da wirklich [mm] x\to0, [/mm] nicht doch eher z?
und bei d) musst du auch noch diesbezüglich ne angabe machen

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Mi 13.12.2006
Autor: Dummy86

es muss bei der b) heißen z [mm] \to [/mm] 0 und bei der d) x [mm] \to \infty [/mm]

sorry war nen tippfehler

Bezug
        
Bezug
Grenzwert: Tipps
Status: (Antwort) fertig Status 
Datum: 15:29 Mi 13.12.2006
Autor: informix

Hallo Dummy86,

versuche, die Brüche so umzuformen, dass beim Einsetzen der Grenzzahl im Nenner nicht mehr 0 entsteht.
Wenn das nicht geht, dann setze [mm] $x_0\pm [/mm] h$ für x ein und lass [mm] h\to0 [/mm] gehen; notfalls, indem du für h kleiner Zehnerbrüche einsetzt: 1/10, 1/100, ... und das Ergebnis beobachtest.

> Man untersuche, ob folgende Grenzwerte existieren( auch
> uneigentlich) und berechne diese gegebenenfalss
>  
> [mm]a)\limes_{x\rightarrow 1}[/mm]  [mm]\bruch {(x^3+2x^2-10x+7)}{x-1}[/mm]

MBPolynomdivision durchführen, dann x=1 einsetzen, fertig.

>  
> [mm]b)\limes_{z\rightarrow 0}[/mm] ([mm] \bruch {(exp(2z)-1)}{2z^2}[/mm] -
> [mm]\bruch {1}{z}[/mm])
>  
> [mm]c)\limes_{x\uparrow 0}[/mm]  [mm]\bruch {[x]}{x}[/mm]
>  
> [mm]d)\limes_{x\rightarrow\infty}[/mm]  [mm]\bruch {x^{[x]}}{exp(x)}[/mm]
>  
> Kann mir einer helfen wie dass geht, also grenzwert
> bestimmen ist kein problem, aber wie überprüfe ich ob
> folgende grenzwetre existieren? hat das was mit stetigkeit
> zu tun?

Bestimme die Grenzwerte; wenn du eine reelle zahl heraus bekommst, existieren die Grenzwerte, sonst eben nicht.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]