matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGreensche Funktion bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Greensche Funktion bestimmen
Greensche Funktion bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Greensche Funktion bestimmen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:38 So 22.06.2014
Autor: Thomas_Aut

Aufgabe
Betrachte die GDGL

$y'' +4y =$ mit $y(0)=y(1)=0$

1)Bestimme die Greensche Funktion der DGL
2)Was passiert wenn die Randbedingung auf [mm] $y(0)=y(\pi)=0$ [/mm] geändert wird?

Hallo,

Nachstehend meine Ansätze


Vorerst müssen wir uns fragen wann denn die Existenz der Greenschen Funktion gesichert ist... mein Skript sagt mir : falls unter der Randbedingung nur triviale Lösungen existieren - Eine reine Verständnisfrage: Wieso könnte nicht auch eine solche Greensche Funktion existieren, wenn das RWP nicht nur triviale Lösungen hat?


Aber nun zum Beispiel:

das char. Polynom der DGL lautet [mm] $p(\lambda) [/mm] = [mm] \lambda^2 [/mm] +4$, somit sind die Nullstellen [mm] $\pm [/mm] 2i$ und damit
$y(x) = [mm] C_{1} \cdot e^{2i} [/mm] + [mm] C_{2} \cdot e^{-2i} [/mm] $, wobei die reelle Lösung damit natürlich : $ [mm] y_{reell} [/mm] (x) = [mm] C_{1} \cdot [/mm] cos(2x) + [mm] C_{2} \cdot [/mm] sin(2x)$ lautet.

Einsetzen der RB liefert:

$0 = [mm] C_{1}cos(0) [/mm] + [mm] C_{2}sin(0) \Rightarrow C_{1} [/mm] = 0$
$0 = [mm] C_{1}cos(1) [/mm] + [mm] C_{2}sin(1) \Rightarrow C_{2} [/mm] = 0$

Somit existiert eine Greensche Funktion $G(x,u)$ für das RWP.

$W(u) = [mm] \begin{pmatrix} cos(2u) & sin(2u) \\ -2sin(2u) & 2cos(2u) \end{pmatrix} \Rightarrow [/mm] det(W(u)) = 2$

Die Greensche Funktion ist nun:

[mm] G(x,u)=\begin{cases} \frac{1}{2}cos(2x)sin(2u), & a \le x \le u \le b\\ \frac{1}{2}cos(2u)sin(2x), & a \le u \le x \le b \end{cases} [/mm]

Angenommen wir ändern die Randbedingung in [mm] $y(0)=y(\pi)=0$ [/mm] , so folgt:

$0 = [mm] C_{1}cos(0) [/mm] + [mm] C_{2}sin(0) \Rightarrow C_{1} [/mm] = 0$
$0 = [mm] C_{1}cos(\pi) [/mm] + [mm] C_{2}sin(\pi) \Rightarrow C_{1} [/mm] = 0$

Also könnte [mm] $C_{2}$ [/mm] beliebig sein und steht im Widerspruch zur Voraussetzung für die Greensche Funktion.


Beste Grüße und Dank

Thomas

        
Bezug
Greensche Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 22.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> Betrachte die GDGL
>
> [mm]y'' +4y =[/mm] mit [mm]y(0)=y(1)=0[/mm]
>  
> 1)Bestimme die Greensche Funktion der DGL
> 2)Was passiert wenn die Randbedingung auf [mm]y(0)=y(\pi)=0[/mm]
> geändert wird?
>  Hallo,
>  
> Nachstehend meine Ansätze
>  
>
> Vorerst müssen wir uns fragen wann denn die Existenz der
> Greenschen Funktion gesichert ist... mein Skript sagt mir :
> falls unter der Randbedingung nur triviale Lösungen
> existieren - Eine reine Verständnisfrage: Wieso könnte
> nicht auch eine solche Greensche Funktion existieren, wenn
> das RWP nicht nur triviale Lösungen hat?
>  
>
> Aber nun zum Beispiel:
>  
> das char. Polynom der DGL lautet [mm]p(\lambda) = \lambda^2 +4[/mm],
> somit sind die Nullstellen [mm]\pm 2i[/mm] und damit
> [mm]y(x) = C_{1} \cdot e^{2i} + C_{2} \cdot e^{-2i} [/mm], wobei die
> reelle Lösung damit natürlich : [mm]y_{reell} (x) = C_{1} \cdot cos(2x) + C_{2} \cdot sin(2x)[/mm]
> lautet.
>  
> Einsetzen der RB liefert:
>  
> [mm]0 = C_{1}cos(0) + C_{2}sin(0) \Rightarrow C_{1} = 0[/mm]
>  [mm]0 = C_{1}cos(1) + C_{2}sin(1) \Rightarrow C_{2} = 0[/mm]
>  
> Somit existiert eine Greensche Funktion [mm]G(x,u)[/mm] für das
> RWP.
>  
> [mm]W(u) = \begin{pmatrix} cos(2u) & sin(2u) \\ -2sin(2u) & 2cos(2u) \end{pmatrix} \Rightarrow det(W(u)) = 2[/mm]
>  
> Die Greensche Funktion ist nun:
>  
> [mm]G(x,u)=\begin{cases} \frac{1}{2}cos(2x)sin(2u), & a \le x \le u \le b\\ \frac{1}{2}cos(2u)sin(2x), & a \le u \le x \le b \end{cases}[/mm]
>  


Poste dazu Deine Rechenschritte.


> Angenommen wir ändern die Randbedingung in [mm]y(0)=y(\pi)=0[/mm] ,
> so folgt:
>  
> [mm]0 = C_{1}cos(0) + C_{2}sin(0) \Rightarrow C_{1} = 0[/mm]
>  [mm]0 = C_{1}cos(\pi) + C_{2}sin(\pi) \Rightarrow C_{1} = 0[/mm]
>  
> Also könnte [mm]C_{2}[/mm] beliebig sein und steht im Widerspruch
> zur Voraussetzung für die Greensche Funktion.
>  


Gefragt ist meines Erachtens, ob die DGL mit
diesen Randbedingungen lösbar ist oder nicht.


>
> Beste Grüße und Dank
>  
> Thomas


Gruss
MathePower

Bezug
                
Bezug
Greensche Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 Mo 23.06.2014
Autor: Thomas_Aut


> Hallo Thomas_Aut,
>  
> > Betrachte die GDGL
> >
> > [mm]y'' +4y =[/mm] mit [mm]y(0)=y(1)=0[/mm]
>  >  
> > 1)Bestimme die Greensche Funktion der DGL
> > 2)Was passiert wenn die Randbedingung auf [mm]y(0)=y(\pi)=0[/mm]
> > geändert wird?
>  >  Hallo,
>  >  
> > Nachstehend meine Ansätze
>  >  
> >
> > Vorerst müssen wir uns fragen wann denn die Existenz der
> > Greenschen Funktion gesichert ist... mein Skript sagt mir :
> > falls unter der Randbedingung nur triviale Lösungen
> > existieren - Eine reine Verständnisfrage: Wieso könnte
> > nicht auch eine solche Greensche Funktion existieren, wenn
> > das RWP nicht nur triviale Lösungen hat?
>  >  
> >
> > Aber nun zum Beispiel:
>  >  
> > das char. Polynom der DGL lautet [mm]p(\lambda) = \lambda^2 +4[/mm],
> > somit sind die Nullstellen [mm]\pm 2i[/mm] und damit
> > [mm]y(x) = C_{1} \cdot e^{2i} + C_{2} \cdot e^{-2i} [/mm], wobei die
> > reelle Lösung damit natürlich : [mm]y_{reell} (x) = C_{1} \cdot cos(2x) + C_{2} \cdot sin(2x)[/mm]
> > lautet.
>  >  
> > Einsetzen der RB liefert:
>  >  
> > [mm]0 = C_{1}cos(0) + C_{2}sin(0) \Rightarrow C_{1} = 0[/mm]
>  >  [mm]0 = C_{1}cos(1) + C_{2}sin(1) \Rightarrow C_{2} = 0[/mm]
>  
> >  

> > Somit existiert eine Greensche Funktion [mm]G(x,u)[/mm] für das
> > RWP.
>  >  
> > [mm]W(u) = \begin{pmatrix} cos(2u) & sin(2u) \\ -2sin(2u) & 2cos(2u) \end{pmatrix} \Rightarrow det(W(u)) = 2[/mm]
>  
> >  

> > Die Greensche Funktion ist nun:
>  >  
> > [mm]G(x,u)=\begin{cases} \frac{1}{2}cos(2x)sin(2u), & a \le x \le u \le b\\ \frac{1}{2}cos(2u)sin(2x), & a \le u \le x \le b \end{cases}[/mm]
>  
> >  

>
>
> Poste dazu Deine Rechenschritte.

Betrachten wir eine DGL der Form

[mm] $a_{2}(x)y'' [/mm] + [mm] a_{1}y' +a_{0}y [/mm] = 0$ mit RB [mm] $R_{1}y [/mm] , [mm] R_{2}y [/mm] = 0$ , wobei die DG für diese RB nur triviale Lösungen hat so existiert die Greensche Funktion :

[mm]G(x,u)=\begin{cases} \frac{y_{1}(x)y_{2}(u)}{a_{2}(u)W(u)}, & a \le x \le u \le b\\ \frac{y_{1}(u)y_{2}(x)}{a_{2}(u)W(u)}, & a \le u \le x \le b \end{cases}[/mm]

einsetzen liefert nun genau:

[mm]G(x,u)=\begin{cases} \frac{1}{2}cos(2x)sin(2u), & a \le x \le u \le b\\ \frac{1}{2}cos(2u)sin(2x), & a \le u \le x \le b \end{cases}[/mm]

>  
>
> > Angenommen wir ändern die Randbedingung in [mm]y(0)=y(\pi)=0[/mm] ,
> > so folgt:
>  >  
> > [mm]0 = C_{1}cos(0) + C_{2}sin(0) \Rightarrow C_{1} = 0[/mm]
>  >  [mm]0 = C_{1}cos(\pi) + C_{2}sin(\pi) \Rightarrow C_{1} = 0[/mm]
>  
> >  

> > Also könnte [mm]C_{2}[/mm] beliebig sein und steht im Widerspruch
> > zur Voraussetzung für die Greensche Funktion.
>  >  
>
>
> Gefragt ist meines Erachtens, ob die DGL mit
>  diesen Randbedingungen lösbar ist oder nicht.

Aber wieso werden triviale Lösungen vorausgesetzt? Ist andernfalls die Greensche Funktion eventuell nicht geschlossen darstellbar?

>  
>
> >
> > Beste Grüße und Dank
>  >  
> > Thomas
>
>
> Gruss
>  MathePower

Gruß Thomas

Bezug
                        
Bezug
Greensche Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Mo 23.06.2014
Autor: fred97


Zuerst allgemein:

  RWP  $y''+4y=0$   y(a)=y(b)=0

Damit die Greensche Funktion ex. brauchst Du linear unabhängige Lösungen u,v von $y''+4y=0$ mit u(a) [mm] \ne [/mm] 0, u(b)=0, v(a)=0 und v(b) [mm] \ne [/mm] 0.

Ist a=0 und b=1, so ex. solche Lösungen. Deine Lösungen leisten das aber nicht.

Ist a=0 und b= [mm] \pi, [/mm] so gibt es solche Lösungen nicht !

FRED

Bezug
                                
Bezug
Greensche Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Mo 23.06.2014
Autor: Thomas_Aut

Hallo FRED,


Die Lösungen

$ u = cos(2x) , v = sin(2x) $ leisten das m.E. schon ?


Gruß Thomas

Bezug
                                        
Bezug
Greensche Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mo 23.06.2014
Autor: fred97


> Hallo FRED,
>  
>
> Die Lösungen
>  
> [mm]u = cos(2x) , v = sin(2x)[/mm] leisten das m.E. schon ?

Es ist aber u(0) [mm] \ne [/mm] 0 und u(1) [mm] \ne [/mm] 0.

FRED

>  
>
> Gruß Thomas


Bezug
                                                
Bezug
Greensche Funktion bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:59 Di 24.06.2014
Autor: Thomas_Aut


> > Hallo FRED,
>  >  
> >
> > Die Lösungen
>  >  
> > [mm]u = cos(2x) , v = sin(2x)[/mm] leisten das m.E. schon ?
>  
> Es ist aber u(0) [mm]\ne[/mm] 0 und u(1) [mm]\ne[/mm] 0.
>  
> FRED
>  >  
> >
> > Gruß Thomas
>  

Da hast du natürlich recht - da war ich schlampig...

Gruß Thomas

Bezug
                                                        
Bezug
Greensche Funktion bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 26.06.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]