matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGreensch-fkt./Wellenglrichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Greensch-fkt./Wellenglrichung
Greensch-fkt./Wellenglrichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Greensch-fkt./Wellenglrichung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:08 Sa 27.08.2005
Autor: schizzlemynizzle

Hallo,
Ich versuche die folgende DGL zu lösen:
[mm] \partial^{2}U/ \partial t^{2} [/mm] - [mm] c^{2} [/mm] * [mm] \partial^{2}U/ \partial x^{2} [/mm] =  [mm] \delta [/mm] ( x - s, t - r) . Außerdem Soll gelten:-  [mm] \infty [/mm] < x <  [mm] \infty [/mm] und
0  [mm] \le [/mm] t  [mm] \le [/mm] T. s, r, c und T sind Konstanten.  Es gelten die Randbedingungen
U(x,T)= [mm] \partial [/mm] U(x,T)/ [mm] \partial [/mm] t =0.
Ich hab den Tip bekommen bei Gleichung bezüglich x eine Fouriertransformation durchzuführen. Leider komm ich dann nicht weiter.
ich erhalte nach der Transformation der Gleichung.
[mm] \partial^{2}F/ \partial t^{2} [/mm] + [mm] c^{2} [/mm] * [mm] k^{2} [/mm] *F =  [mm] \bruch{1}{ \wurzel{2*pi}} *e^{- i*k*s} [/mm] * [mm] \delta [/mm] (t - r). F soll die Fouriertransformierte von U sein.  Die Randbedingungen dieser DGL sind doch nun:F(k,T)= [mm] \partial [/mm] F(k,T)/ [mm] \partial [/mm] t =0.   Jetzt weiß ich leider nicht weiter. Vielleicht hat jemand von euch einen Tip wie ich nun verfahren soll.
Hab ich irgendwo Fehler gemacht?
freundlich Grüße und schon mal vielen Dank im voraus, Jürgen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Greensch-fkt./Wellenglrichung: Fourier einer Deltafunktion
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 31.08.2005
Autor: kuroiya

Hallo Jürgen

Wies ausschaut, hast du die Transformation ganz gut durchgeführt, nur die Deltafunktion ist wohl nicht ganz astrein transformiert worden. Ne Deltafunktion Fouriertransformiert ist immer ne Konstante, wodurch sich deine Gleichung ein wenig vereinfacht.

[mm] \frac{\partial^2 F}{\partial t^2} [/mm] + [mm] c^{2}k^{2}F [/mm] = [mm] \delta(t [/mm] - r)*const.

Wir haben diese Konstante früher immer 1 gewählt, soweit ich mich erinnere (man kann den Umrechnungsfaktor auf U, bzw. F abschieben, und hats so leichter zum Rechnen). Also stehst du vor folgender Gleichung:

[mm] \frac{\partial^2 F}{\partial t^2} [/mm] + [mm] c^{2}k^{2}F [/mm] = [mm] \delta(t [/mm] - r)

Ich würde die Gleichung jetzt ganz allgemein lösen... erst homogene Gleichung, dann partikuläre Lösung der inhomogenen, zusammenaddieren (ich denk, du weisst, wie das geht). Und dann, wenn du n F hast, die Randbedingungen benutzen. Zurücktransformieren. Fertig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]