matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikGravitationskraft auf MP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Gravitationskraft auf MP
Gravitationskraft auf MP < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gravitationskraft auf MP: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:00 Sa 26.04.2008
Autor: TMV

Hallo,
ich versuche gerade die Gravitationskraft einer unendlich ausgedehnten Ebene auf einen Massenpkt. zu bestimmen der sich in mitten eines in dieser Ebene ausgeschnittenen Loches mit dem Radius R befindet. Leider komme ich zu keinem befriedigenden Ergebnis.
Meine Überlegungen:

allgemein: [mm] F_{G}= \bruch{GmM}{r^{2}} [/mm]  Die Gravitationskraft zwischen dem MP und einen Massenelement der Scheibe ist also: [mm] dF_{G}= \bruch{GmdM}{r^{2}} [/mm]  wobei (Annahme einer unendlich großen Kreisscheibe) [mm] dM=o2\pi [/mm] rdr  (o: Flächenmassendichte)
[mm] \Rightarrow F_{G}= GmM2\pi\integral_{R}^{\infty}{\bruch{1}{r} dr} [/mm]

Ich habe auch schon andere Versionen ausprobiert, doch meistens  kam wie bei dieser beim integrieren [mm] \infty [/mm] aus, was jedoch nicht der Fall sein darf. Leider bin ich momentan etwas ratlos. Ich würde mich über jede Hilfe freuen!
Gruß
TMV



        
Bezug
Gravitationskraft auf MP: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Sa 26.04.2008
Autor: Kroni

Hi,

zeichne dir mal die Fläche hin. Dann musst du beachten, dass die Kraft ein Vektor ist. Wenn du dir den hinzeichnest, von einem Massenelement dM, dann siehst du, dass nur die Komponente, die senkrecht nach oben steht, zählt. [mm] F_g [/mm] steht zwar "schräg", wenn das Massenelement dM nicht genau senkrecht über deiner Probemasse steht, aber zu jedem Massenelement dM existiert ein "GegenElement", so dass sich die waagerechten Kräfteteile sich gegenseitig aufheben.

Gut, dann würde ich den Abstand r in einen Abstand d vom Mittelpunkt des Kreises zu deinem Massenelement dM zerlegen und einer Höhe, die senkrecht zur Fläche steht, und durch deine Probemasse geht. Dann kannst du einen Winkel alpha eintragen, der zwischen h und r steht. Dann alle r usw. durch alpha ausdrücken, so dass du nur eine Variable dort stehen hast. Dann gucken, ab welchem Alpha du integrieren musst, und du musst auf jeden Fall bis [mm] $\pi/2$ [/mm] integrieren, denn dann erreichst du das "unendlich" Weite. Achso: Ich würde dann auf jeden Fall die FLäche auch in Kreisringe aufteilen, denn so wird die Integration doch recht einfach.

Falls du nun nicht weißt, was ich meine, sag bescheid, dann versuch ich ne Skizze am PC hinzuebkommen.

LG

Kroni

Bezug
                
Bezug
Gravitationskraft auf MP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Sa 26.04.2008
Autor: TMV

Sorry ich kann mir nur ungefähr vorstellen wie du das meinst- [mm] r=tan(\alpha)h [/mm] in die Gleichung für die Gravitationskraft substituieren und von arctan(r/h) bis [mm] \pi/2 [/mm] intergrieren und hätte dann die Kraft. Sehe ich das richtig?

Bezug
                        
Bezug
Gravitationskraft auf MP: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Sa 26.04.2008
Autor: Kroni

Hi,

nein, so ganz ist das noch nicht richtig.

Schreib dir mal dein Flächenstück dA als [mm] $r*d\phi*dr$ [/mm] Dann mach dir mal eine Skizze, und Zerteile die Fläche dann in Kreisflächen. Dann integrieren, alles durch [mm] $\alpha$ [/mm] ausdrücken. Alpha ist der Winkel, der zwischen der Verbindungslinie zwischen dM und deiner Probemasse und der senkrechten Projektion auf die Ebene ist. Dann gucken, von wo bist wo du alpha integrieren musst, [mm] \phi [/mm] geht auf jeden fall von 0 bis [mm] 2\pi. [/mm]
Wenn du noch weitere Probleme hast, dann mach ich dir nachher noch eine Skizze, aber das kann dauern, weil ich gleich weg bin.

Beste Grüße,

Kroni

Bezug
                                
Bezug
Gravitationskraft auf MP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Sa 26.04.2008
Autor: TMV

So hab ich das jetzt verstanden:

[mm] dF_{G}=\bruch{GmdM}{r^{2}} [/mm] ist die Kraft die zwischen der Probemasse und dem Massenelement dM wirkt. Durch die Symmetrie der Anordnung bleibt nur die zur Ebene gerichtete Komponente der Kraft [mm] dF_{Gy}=dF_{G}cos(\alpha) [/mm] übrig.
Nun muss ich den Ortsvektor r zwischen der Probemasse und dM ersetzen, so dass ich nach alpha integrerieren kann.
So würde ich r durch [mm] r=cos(\alpha)h [/mm] ersetzen, wobei h das senkrechte Lot auf der Ebene ist, auf dem sich Probemasse befindet.
Nun müsste ich dM noch ersetzen: dM= [mm] o2\pi [/mm] rdr, wobei [mm] r=cos(\alpha)h [/mm] und [mm] dr=-sin(\alpha)hd\alpha, [/mm] also [mm] dM=-o2\pi cos(\alpha)sin(\alpha)hd\alpha.(o [/mm] wieder Flächenmassendichte)
Die Intergrationsgrenzen wären dann:
unten: [mm] arctan(\bruch{R}{h}), [/mm] wobei R der Radius des Loches ist und
oben [mm] \bruch{\pi}{2} [/mm]
Dann wäre:
[mm] dF_{Gy}=\bruch{-2\pi oGmM}{(cos(\alpha)h)^{2}}cos(\alpha)hsin(\alpha)hd\alpha [/mm]
Daraus ergibt sich:
[mm] F_{Gy}=\bruch{-2\pi oGmM}h\integral_{arctan(R/h)}^{\bruch{\pi}{2}}{tan{\alpha} d\alpha} [/mm]

Problem macht hierbei wieder die Integration weil wieder unendlich rauskommt, also hab ich wohl wieder einen Denkfehler drin.

Bezug
                                        
Bezug
Gravitationskraft auf MP: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 So 27.04.2008
Autor: Kroni

Hi,

hier eine Skizze des Problems:

[Dateianhang nicht öffentlich]

Gut, es gilt für die Kraft:

[mm] $F=-G*\int \frac{m*dM}{a^2}*cos\alpha$ [/mm]

Nun ersetzen wir dM durch [mm] $dM=\sigma [/mm] dA$ Wenn wir das Problem geschickt parametrisieren, nämlich durch r und Winkel [mm] \phi, [/mm] dann sehen wir:

[mm] $dA=r*dr*d\phi$ [/mm]

Gut, also steht da letztendlich:

[mm] $F=-G*\int \frac{m*\sigma*r*dr*d\phi}{a^2}*\cos\alpha$ [/mm]

Gut, a hängt von [mm] \alpha [/mm] ab, r hängt von [mm] \alpha [/mm] ab, [mm] \phi [/mm] nicht.

Also drücken wir mal fast alle Größen durch [mm] \alpha [/mm] aus:

[mm] $r=d*\tan\alpha$ [/mm] => [mm] $dr=\frac{dr}{d\alpha}d\alpha=\frac{d}{\cos^2\alpha}d\alpha$ [/mm]

Gut, fehlt nur noch ein Term für a: [mm] $a=\frac{d}{\cos\alpha}$ [/mm] (das sieht man alles am Dreieck).

Dann einstezen:

[mm] $F=-Gm\sigma\int \frac{d*\tan\alpha*d*d\phi*\cos\alpha*\cos^2\alpha}{d^2*\cos^2\alpha}d\alpha=-Gm\sigma\int d\phi *\int \sin\alpha d\alpha$ [/mm]

Okay, jetzt nur noch wissen, was von wo bis wo geht:

[mm] $\phi$ [/mm] geht von 0 bis [mm] 2\pi [/mm]

[mm] \alpha [/mm] geht von [mm] $\arctan \frac{R}{d}$ [/mm] bis [mm] $\frac{\pi}{2}$ [/mm]

Jetzt alles einmal integrieren, und du bist fertig.

LG

Kroni

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                                
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 So 27.04.2008
Autor: TMV

Hab gerade gesehen, dass meine Rechnung doch stimmt hab nur r falsch aufgestellt. Wenn man bei meiner Rechnung statt [mm] r=cos(\alpha)h [/mm] (falsch!) [mm] r=\bruch{h}{cos(\alpha)} [/mm] einsetzt kommt das Gleiche raus wie bei dir. (In meiner Rechnung ist dein a ein r und dein d ein h, usw.)
Danke du hast mir sehr geholfen!

Bezug
                                                        
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Mo 28.04.2008
Autor: leduart

Hallo
lies dir die Mitteilung von chrisno durch, dein Aufgabentext gibt eigentlich ihm rech!
Gruss leduart

Bezug
        
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Sa 26.04.2008
Autor: chrisno

Ich verstehe offenbar die Aufgabe nicht richtig. Die Anordnung erscheint mir so symmetrisch, dass das Ergebnis Null sein muss. Wenn der Punkt in der Mitte des Ausschnitts sitzt, dann gibt es doch für jeden Massenpunkt in der Ebene einen der genau gegenüber liegt. So heben sich alle Kräfte paarweise auf.

Bezug
                
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Sa 26.04.2008
Autor: Kroni

Hi,

man kann zu jedem Massenstück dM ein Gegenstück finden, so dass sich die Kraftteile, die parallel zur Ebene liegen, geegenseitig aufheben. Die Kraftteile, die aber senkrecht zur Ebene stehen, können sich nicht aufheben, da die Gravitationskraft immer anziehend wirkt.

LG

Kroni

Bezug
                        
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Mo 28.04.2008
Autor: chrisno

Da stand aber mitten in dem Loch, nicht über dem Loch. Was solls. Das, was ihr diskutiert, ist wohl das eigentlich gefragte.

Bezug
                                
Bezug
Gravitationskraft auf MP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Di 29.04.2008
Autor: Kroni

Hallo,

ich hatte mir den Aufgabentext nicht weiter durchgelesen, weil ich der Ansicht war, dass das Objekt über dem Loch sein sollte.
Befindet sich das Objekt aber in mitten des Loches, also auch in der Ebene, dann ist die Gesamtkraft 0, wie du richtig sagtest.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]