matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieGraphentheorie beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Graphentheorie" - Graphentheorie beweis
Graphentheorie beweis < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphentheorie beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Fr 13.06.2008
Autor: Lessequal

Aufgabe
Zeigen sie,dass folgendes Lemma gilt

Fuer jeden ungerichteten,endlichen,zusammenhaengenden graphen G gibt es einen Teilgraph T ,der ein Baum ist und fuer den [mm] V_{T} [/mm] = [mm] V_{G} [/mm] gilt.

Hallo,
hat jmd viellecht einen Beweis dafuer?

        
Bezug
Graphentheorie beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Fr 13.06.2008
Autor: Al-Chwarizmi

  > Zeigen sie,dass folgendes Lemma gilt
>  
> Fuer jeden ungerichteten,endlichen,zusammenhaengenden
> graphen G gibt es einen Teilgraph T ,der ein Baum ist und
> fuer den [mm]V_{T}[/mm] = [mm]V_{G}[/mm] gilt.
>  Hallo,
>  hat jmd viellecht einen Beweis dafuer?


Solange der Graph noch kein Baum ist, also noch
mindestens einen "Kreis" enthält, kann man aus
einem der Kreise eine Kante entfernen, ohne dabei
den Zusammenhang zu zerstören oder Ecken zu
isolieren. Bei jedem solchen Schritt vermindert
sich die Anzahl der Kanten um 1. Das macht man
so lange, bis kein Kreis mehr vorhanden ist und
der Teilgraph T erreicht ist. Da der Graph G endlich
sein soll, muss dieses Verfahren terminieren, denn
man kann ja auch nur eine endliche Zahl von
Kanten entfernen.

LG    al-Chwarizmi

Bezug
                
Bezug
Graphentheorie beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Fr 13.06.2008
Autor: Lessequal

danke danke :)

Bezug
        
Bezug
Graphentheorie beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Fr 13.06.2008
Autor: angela.h.b.

Hallo,

bitte keine Doppelpostings mehr in Zukunft!

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]