matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGraphen zeichnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Graphen zeichnen
Graphen zeichnen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Di 18.05.2010
Autor: cable

Hallo. Ich habe am Donnerstag meine mündliche Prüfung in Mathe und frage mich wie ich den Graphen einer Funktion zeichnen kann ohne vorher nach Extrem-, Wende,- und Nullpunkten zu suchen.Ein Beispiel wäre f(x)= x³-6*x²+9x

        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Di 18.05.2010
Autor: Adamantin

Ganz allgemein geht das nur über viel Erfahrung und sehr grob. Wenn es speziell nur um rationale Funktionen bzw also Polynome geht, also dein Fall P(x) oder allenfalls noch gebrochenrational, dann geht dies sehr leicht, aber grob, über Grenzwertbetrachtung.

Dein Beispiel lautet:

> f(x)= x³-6*x²+9x

Nun, dann weißt du hoffentlich, sofort, dass der Graph schonmal für betragsmäßig große x wie [mm] x^3 [/mm] verläuft, also für x gegen [mm] \pm \infty. [/mm] Desweiteren ist ein [mm] -x^2 [/mm] Term enthalten, der wird wichtig, wenn x zunehmend kleiner wird, also wird der Graph irgendwo um 0 herum sich wie [mm] -x^2 [/mm] verhalten und damit kann man schon ungefähr ein Bild zeichnen, also der GRaph kommt aus dem minus unendlichen, macht um 0 herum eine Art [mm] -x^2-Parabel, [/mm] also mit einem Hochpunkt statt dem üblichen Tiefpunkt durch das Minus vor dem [mm] x^2 [/mm] und geht für große x-Werte wieder gegen + unendlich

PS: Es ist natürlich klar, dass nach dem Hochpunkt durch [mm] -x^2 [/mm] noch ein Tiefpunkt folgen muss, wenn der Graph ja gegen + [mm] \infty [/mm] gehen soll, denn [mm] -x^2 [/mm] bewirkt ja einen Hochpunkt und danach ist die Steigung negativ, wenn sie also positiv werden soll, brauchen wir noch einen TP nach dem HP und schon gehts steil aufwärst ^^

PS2: habe deine Funktion mal geplottet und wie man sieht, bewirken die [mm] x^2 [/mm] und der 9x-Term gerade einmal eine Veränderung vom Verhalten [mm] x^3 [/mm] im Bereich von +4 für y und ca +6 für x, also Minimal im großen Maßstab und für kleine x-Werte kommst du mit den Überlegungen bisher auch sehr weit.

[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Graphen zeichnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Di 18.05.2010
Autor: cable

vielen dank.das war hilfreich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]