matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenGraphbestimmenung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Graphbestimmenung
Graphbestimmenung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphbestimmenung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:14 Mi 03.05.2006
Autor: Falk05

Aufgabe
[mm] f(x)=c*e^x [/mm]
Bestimme c so, dass der zu [mm] f_{c} [/mm] gehörende Graph im Schnittpunkt mit der y-achse die Steigung 0,4 hat.

Brauche dringend Hilf, da ich nicht weiter weiß!
Schonmal Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Graphbestimmenung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mi 03.05.2006
Autor: laryllan

Aloa hé falk,

dann schaun wir mal, was wir tun können.

Kurvenschar-Aufgaben sind immer Spaßig. Im Prinzip hast du alles, was du brauchst! - Zeit es zu benutzen :)

Du hast die Information, dass dein Graph an einem Punkt (nämlich der Ordinaten aka y-Achsen) den Steigungswert 0,4 also [mm] \bruch{2}{5} [/mm] haben soll.

Ferner solltest du derweil die sog. "erste Ableitung" kennen. Die Erste Ableitung wird gerne dazu benutzt sog. Extrema zu finden. Viele Leute vergessen jedoch, dass sie auch andere höchst nützliche Eigenschaften hat (die aus ihrer Herleitung herrühren): Wenn man einen beliebigen x-Wert in die Ableitung einsetzt gibt sie einem die Steigung des Graphen in eben diesem Punkt.

Genau das was du brauchst oder?

Was ist zu tun?

- Bilde die Ableitung von $ [mm] f(x)=c\cdot{}e^x [/mm] $
- Setze $ [mm] f'(x)=\bruch{2}{5} [/mm] $ und für x dann den Wert "0" ein, damit du den Schnittpunkt mit der Ordinate hast.

Voilà!

Namárie,
sagt ein Lary, wo hofft, dass dir das was nützt

Bezug
                
Bezug
Graphbestimmenung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 03.05.2006
Autor: Falk05

[mm] f'(x)=e^x [/mm]
f'(x)=0.4
[mm] e^x*c=0,4 [/mm]
[mm] c=(2*e^{-x})/(5) [/mm]

Bezug
                        
Bezug
Graphbestimmenung: konstanter Faktor
Status: (Antwort) fertig Status 
Datum: 18:43 Mi 03.05.2006
Autor: Loddar

Hallo Falk!


du hast beim Ableiten den konstanten Faktor $c_$ unterschlagen, der ja gemäß MBFaktorregel erhalten bleibt:

$f'(x) \ = \ [mm] \red{c}*e^x$ [/mm]


Wie lautet nun Dein Ergebnis für $c_$ , wenn Du $x \ = \ 0$ bzw. $f'(x) \ = \ 0.4$ einsetzt?


Gruß
Loddar


Bezug
                                
Bezug
Graphbestimmenung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Mi 03.05.2006
Autor: Falk05

dann wäre doch c=0.4

Bezug
                                        
Bezug
Graphbestimmenung: Völlig richtig!
Status: (Antwort) fertig Status 
Datum: 08:34 Do 04.05.2006
Autor: Loddar

Guten Morgen Falk!


> dann wäre doch c=0.4

[daumenhoch] Genau!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]