matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieGraph oder Komplement zyklisch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Graphentheorie" - Graph oder Komplement zyklisch
Graph oder Komplement zyklisch < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph oder Komplement zyklisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:35 Di 26.05.2009
Autor: Wastelander

Aufgabe
G = (E, K, ϕ) sei ein Graph mit mindestens fünf Knoten. Zeigen Sie, dass G oder der zu G komplementäre Graph G = (E', K', ϕ') mit E' = E, k∈K' ⇔ k∉K und ϕ' : K' → E×E einen Kreis enthält.

Mein Ansatz hier ist Folgender:

Sei $G$ mit $E = [mm] \{e_1, ... , e_n\}$,$n \ge [/mm] 5$ zusammenhängend und kreisfrei. Somit existiert ein maximaler Weg zwischen $x,y [mm] \in [/mm] E$ mit Kanten [mm] $(v_1, [/mm] ... [mm] ,v_{n-1})$. [/mm]

Auch in [mm] $\bar{G}$ [/mm] existiert ein Weg zwischen $x$ und $y$ mit Kanten [mm] $(w_1, [/mm] ... [mm] ,w_m)$, $w_1, [/mm] ... , [mm] w_m \notin [/mm] K$. Weiterhin existiert eine Kante [mm] $w_0 [/mm] = (x,y)$, wodurch sich o.g. Weg zu einem Kreis erweitern lässt.

Kann man bei dieser Aufgabe so begründen? Ich habe allerdings noch keinen Ansatz für den 2. Fall (G kreisfrei und nicht zusammenhängend). Könnt ihr mir (mal wieder ^^) helfen?

LG
~W

        
Bezug
Graph oder Komplement zyklisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Mi 27.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Graph oder Komplement zyklisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 Mi 27.05.2009
Autor: Wastelander

Aufgabe
Sei $G = [mm] (E,K,\phi)$ [/mm] ein Graph mit der Eigenschaft, dass alle Knoten den Knotengrad mindestens 2 haben. Zeigen Sie, dass G einen Kreis enthält.

Ich habe die Aufgabe noch einmal durchdacht und glaube, dass ich sie mithilfe des vorigen Aufgabenteils (s. oben) und einigen Modifikationen an meiner obigen Antwort vollständig lösen kann.

Zunächst meine Lösung zum ersten Aufgabenteil:

(a) Angenommen $G$ mit $E = [mm] \{e_1 , \cdots , e_n \}$ [/mm] sei kreisfrei und der Knotengrad [mm] $g(e_i) \ge [/mm] 2$ in jedem Knoten.

[mm] \Rightarrow [/mm] $G$ ist ein Baum [mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten

Ein derartiger Graph müsste aber $ [mm] \summe_{i=1}^{n} g(e_i) \ge [/mm] 2 * n [mm] \ge [/mm] n-1$ Kanten haben, da jeder Knoten mind. 2 Kanten besitzt, die zu bisher unverbundenen Knoten führen.

[mm] \Rightarrow [/mm] Widerspruch


(b) Sei $G$ ein schlichter, kreisfreier Graph mit $n [mm] \ge [/mm] 5$ Knoten $E = [mm] \{e_1, \cdots , e_n\} [/mm] $.

[mm] \Rightarrow [/mm] $G$ ist maximal ein aufspannender Baum des vollständigen Graphen $V = (E, [mm] K_V, \phi_V)$. [/mm]
[mm] \Rightarrow [/mm] $G$ hat maximal $n-1$ Kanten [mm] $k_1, \cdots [/mm] , [mm] k_{n-1}$ [/mm] und jeder Knoten den Grad [mm] $g(e_i) \le [/mm] 2$.
[mm] \Rightarrow [/mm] Im komplementären Graph [mm] $\bar [/mm] {G}$ hat jeder Knoten den Grad [mm] $\bar g(e_i) \ge n-1-g(e_i) \ge [/mm] 2$.
[mm] \Rightarrow^{(a)} [/mm] $G$ enthält einen Kreis.

Erneut die Frage, kann man so argumentieren? Nach neuerlicher Überlegung bin ich mir mit meinem "Beweis" zu Aufgabenteil (a) überhaupt nicht mehr sicher.

Ich bitte um Hilfe.

LG ~W

Bezug
                        
Bezug
Graph oder Komplement zyklisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]