matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungGraph nach einer Kurvendisk.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Graph nach einer Kurvendisk.
Graph nach einer Kurvendisk. < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph nach einer Kurvendisk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 14.05.2007
Autor: m.styler

Hallo!

Wenn ich eine Kurvediskussion fertig habe, muss ich doch anschließend, und als letzten Punkt einen Graphen zu der gegebenen, und von mir untersuchten Funktion zeichnen.

Was sind die ersten Schritte, die man vollführen muss?

Kann mir das jemand erklären?

danke im voraus!
mfg m.styler

        
Bezug
Graph nach einer Kurvendisk.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mo 14.05.2007
Autor: Steffi21

Hallo,

du zeichnest Folgendes in dein Koordinatensystem:

- Nullstelle(n)
- Wendepunkt(e)
- Extrempunkt(e)
- Asymtote(n)
- Wertetabelle, um den Verlauf genauer darzustellen

Ich benutze immer gern einen Fuktionsplotter, hier kannst du []Funkyplot runterladen,

Steffi



Bezug
                
Bezug
Graph nach einer Kurvendisk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 14.05.2007
Autor: m.styler

Hallo!

Zitat:
- Asymtote(n)
- Wertetabelle, um den Verlauf genauer darzustellen

Asymptote: Wie untersuche ich diese?
Indem ich den Grenzwert der Funktion berechne?


Wertetabelle: Nur zu den  Nullstellen oder sonst noch eine?

danke im voraus!
mfg m.styler

Bezug
                        
Bezug
Graph nach einer Kurvendisk.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mo 14.05.2007
Autor: hase-hh

moin!

wie steffi schon sagte,

du machst eine wertetabelle,

und zwar zeichnest du zuerst alle "markanten" punkte der funktion

- nullstellen
- lokale extremwerte (TP / HP)
- wendepunkte

- ggf. polstellen und asymptoten [dies ist insbesondere für gebrochenrationale funktionen interessant]

... es sind also nicht nur die nullstellen für die wertetabelle interessant.

hat deine funktion definitionslücken, so musst du das verhalten der funktion in der umgebung links und rechts von dieser polstelle untersuchen... stichworte: polstelle mit vorzeichenwechsel, polstelle ohne vorzeichenwechsel, hebbare definitionslücke.

hat deine funktion asymptoten, so musst du auch diese in deine zeichnung einbeziehen.

mal grob (allg.):

du bildest:

[mm] \limes_{x\rightarrow + \infty} [/mm] f(x)

und

[mm] \limes_{x\rightarrow - \infty} [/mm] f(x)


für ganzrationale funktionen ist die asymptoten-betrachtung unwesentlich, da für wachsende x die werte über alle grenzen wachsen, oder über alle grenzen fallen...

für gebrochenrationale funktionen hängt es von dem grad der funktion im zähler im verhältnis zum grad der funktion im nenner ab.

ist  der zählergrad größer als der nennergrad  gibt es keine asymptote(n)

ist der nennergrad größer als der zählergrad ist die x-achse asymptote für x gegen [mm] \pm \infty [/mm]

ist der zählergrad gleich dem nennergrad gibt es eine etwas aufwändigere limes-betrachtung, und es gibt eine gerade, die asymptote an den graphen ist.

soweit.

gruß
wolfgang

















Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]