matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGraph: gebrochen-rationale FKT
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Graph: gebrochen-rationale FKT
Graph: gebrochen-rationale FKT < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph: gebrochen-rationale FKT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 09.08.2007
Autor: chris2009

Aufgabe
Zeichne den Graphen zu f(x)= [mm] \bruch{1}{2x}. [/mm]
Bestimme dazu die Nullstellen, falls möglich.
Wie ist die Monotonie zu bezeichnen?

Hallo!

Habe jetzt schon mit einem Freund darüber gesprochen, er weiß auch nicht weiter.

Denn wenn ich die Nullstellen ausrechne:

[mm] f(0)=\bruch{1}{2x} [/mm]

geht nicht. Also keine Berührung mit der x-Achse. Oder?

Extrem- oder Wendestellen gibt es nicht, da keine der Ableitungen der Funktion ein "x" besitzt.

Wie ist die Monotonie?

Und jetzt soll ich den Graphen zeichnen. Wie mache ich das denn, ganzt ohne Anhaltspunkte? Wertetabelle?

Oder kann man auch etwas zum Unendlichkeitsverhältnis sagen, da der Exponent von "x" nun einmal sozusagen "1" ist?
Also bei -oo dementsprechend auch -oo und bei +oo auch +oo?

Vielen Dank schon einmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Graph: gebrochen-rationale FKT: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 09.08.2007
Autor: vagnerlove

Hallo



> Denn wenn ich die Nullstellen ausrechne:
>  
> [mm]f(0)=\bruch{1}{2x}[/mm]

das was du ausrechnest ist der Funktionswert an der Stelle 0, aber nicht die Nullstelle.
Nullstellen berechnet man so: f(x)=0

>  
> geht nicht. Also keine Berührung mit der x-Achse. Oder?

Trotzdem stimmt das.

>  
> Extrem- oder Wendestellen gibt es nicht, da keine der
> Ableitungen der Funktion ein "x" besitzt.
>  

Das stimmt, aber deine Argumentation verstehe ich nicht ganz.


> Wie ist die Monotonie?
>  

Berechne f'(x) und gucke, ob f'(x)>0 oder f'(x)<0 ist, wenn f'(x)>0 ist, ist der Graph der Funktion f(x) streng monoton steigend.


> Und jetzt soll ich den Graphen zeichnen. Wie mache ich das
> denn, ganzt ohne Anhaltspunkte? Wertetabelle?
>  

Ein paar "Anhaltspunkte" hast du doch. Du weißt, dass es keine Null,-Extrem-und Wendestellen gibt. Außerdem weißt du über die Monotonie bescheid!

> Oder kann man auch etwas zum Unendlichkeitsverhältnis
> sagen, da der Exponent von "x" nun einmal sozusagen "1"
> ist?

Stimmt, man kann auch etwas zum Verhalten im Unendlichem sagen, dass hat aber nichts damit zu tun, dass der Exponent von x, 1 ist.

>  Also bei -oo dementsprechend auch -oo und bei +oo auch
> +oo?
>  

Nein, dass stimmt nicht. Wenn x gegen + oder-unendlich läuft, geht f(x)--->0
Wir haben hier also, eine sogenannte lineare Asymptote mit der Gleichung y=0
Außerdem gibt es hier eine Polstelle bei x=0, wenn x-->0, geht also f(x)-->+-unendlich


> Vielen Dank schon einmal!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Gruß

Reinhold


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]