matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungGraph einer Ableitungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Graph einer Ableitungsfunktion
Graph einer Ableitungsfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph einer Ableitungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Mi 07.03.2007
Autor: m.styler

Hallo!

Ich habe allgemein eine Frage zu zeichenerischem Differenzieren, wodurch man Tangentensteigungen bestimmen kann.

Wie  kann ich das Krümungsverhalten bestimmen?
Denn, die Ableitungsfunktion ändert sich, und somit auch ihre Koordinaten, die dann als Ordinaten bezeichnet werden.

Gibt es da so eine Art "Regel" oder "Gesetz" womit man die Hochpunkte, Tiefpunkte, Wendepunkte und Sattelpunkte identifiziert?


mfg m.styler

danke im voraus!

        
Bezug
Graph einer Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mi 07.03.2007
Autor: Kroni

Hi,

guck dir mal den Link an.

Bei weiteren Fragen einfach melden=)

Sláin,

Kroni

Bezug
                
Bezug
Graph einer Ableitungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 07.03.2007
Autor: m.styler

Hallo!

Ja, der Link enthält Informationen über Ableitungen.

Aber, wie überträgt man die WP,SP... aus einem Graphen, der keine Y/ X-Werte enthält, man sieht nur den Graphen selbst, und muss ihn neu mit den entsprechenden Ordinaten übertragen um auf f´(x) zu gelangen.

Wie kann man es zeichnerisch beweisen/ festlegen, kann man etwas zu den WP,SP...etwas sagen, wie:

Ein Graph:
f(x)
Hochpunkt=1,5/1
Wendepunkt=0,5/2,5
Tiefpunkt=0,2/3,5
Wedepunkt=0,75/4,5
Scheitelpunkt=1,4/6

Ausgangsfunktion:
f´(x)
WP=0/1
TP=1/2,5
WP=0/3,5
HP=1/4,5
WP=0/6

Wieso kommt das dazu, dass ein HP zum WP wird, der dann genau auf x-Achse ist?
Und, ein WP wird zum TP und der andere wiederum zum HP?

Gibt es bestimmte Gründe dafür?


mfg m.styler
danke im voraus!

Bezug
                        
Bezug
Graph einer Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mi 07.03.2007
Autor: Mathehelfer

Hi!

Wenn man aus einer Zeichnung von f(x) den Graphen von f'(x) skizzieren soll, so muss man sich markante Punkte von f(x) heraussuchen. Extrempunkte liegen immer dann vor, von f'(x)=0 ist. Und das ist genau dann der Fall, wenn die Steigung in einem Punkt von f(x) gleich Null ist. Eine Ableitung gibt immer die Steigung des ursprünglichen Graphen an. So gilt:

- Der x-Wert vom Hoch-/Tiefpunkt von f ist die Nullstelle von f'
- Die Wendestelle von ist der x-Wert vom Hoch-/Tiefpunkt von f' und somit die Nullstelle von f''
- Das Steigungsverhalten von f kannst du dir überlegen, indem du beobachtest, wie sich die Tangentensteigungen verändern, wenn du diese an verschiedenen Punkten am Graph anlegen würdest.

Gehe so Stück für Stück vor und mache dir immer klar, dass der y-Wert der Ableitung eigentlich nur den Wert der Steigung der Tangente in einem bestimmten Punkt angibt. Ich habe dir mal als Beispiel eine Zeichung gemacht.
[Dateianhang nicht öffentlich]

[mm]f(x)=2x^3-3x^2 \Rightarrow f'(x)=6x^2-6x \Rightarrow f''(x)=12x-6 [/mm]

Nun überleg dir mal Folgendes: Welcher der Graphen ist f, f' und f''? Auch wichtig zu wissen ist: Eine ganzrationale Funktion n-ten Grades (z. B. [mm] f(x)=x^n+...) [/mm] hat max. n Nullstellen, n-1 Extrema und max. n-2 Wendestellen.

Viele Grüße,
Mathehelfer

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]