matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikGraph G od. G' zusammenhängend
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Graph G od. G' zusammenhängend
Graph G od. G' zusammenhängend < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph G od. G' zusammenhängend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Fr 19.10.2012
Autor: SamuraiApocalypse

Aufgabe
Sei G = (V,E) ein endlicher Graph, n= [mm] $\vmat{V}$ [/mm] und

G' = (V, [mm] $\{$ X $\subseteq$ V: $\vmat{V}$ = 2 $\}$ [/mm] \ E)

a)Zeige, dass G oder G' zusammenhängend ist.

Annahme G ist zusammenhängend.

Nun ich wähle E' = {$ X [mm] $\subseteq$ [/mm] V: [mm] $\vmat{V}$ [/mm] = 2 [mm] $\}$ [/mm] \ E

Damit nun G' zusammenhängend ist muss [mm] V$\subseteq$V' [/mm] und [mm] E$\subseteq$E' [/mm] gelten. Da V = V' ist ist dies erfüllt, also ist G' ein Teilgraph von G.

Für die Umkehrung: ich weiss nicht wie ich das anstellen soll, da ich nicht genau weiss wie E aussieht, also welche Elemente noch in E' vorhanden sind..

Vielen Dank für die Antworten!
SA



        
Bezug
Graph G od. G' zusammenhängend: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 So 21.10.2012
Autor: hippias


> Sei G = (V,E) ein endlicher Graph, n= [mm]\vmat{V}[/mm] und
>  
> G' = (V, [mm]\{[/mm] X [mm]\subseteq[/mm] V: [mm]\vmat{V}[/mm] = 2 [mm]\}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

\ E)

>  
> a)Zeige, dass G oder G' zusammenhängend ist.
>  Annahme G ist zusammenhängend.

Fuer die zu zeigende Behauptung ist diese Annahme unguenstig, da in diesem Fall nichts mehr zu zeigen waere. Besser ist es anzunehmen, dass z.B. $G$ nicht zusammenhaengend ist, um dann zu schlussfolgern, dass $G'$ dann zus. sein muss. Lassen sich also $x,y\in V$ nicht durch eine Weg in $E$ verbinden, so betrachte die Menge $\{ x,y\}$ und zeige, dass sie in $E'$ liegt (wenn ich Deine Definition richtig verstanden habe).

>  
> Nun ich wähle E' = {$ X [mm]$\subseteq$[/mm] V: [mm]$\vmat{V}$[/mm] = 2 [mm]$\}$[/mm]
> \ E
>  
> Damit nun G' zusammenhängend ist muss V[mm]\subseteq[/mm]V' und
> E[mm]\subseteq[/mm]E' gelten. Da V = V' ist ist dies erfüllt, also
> ist G' ein Teilgraph von G.
>  
> Für die Umkehrung: ich weiss nicht wie ich das anstellen
> soll, da ich nicht genau weiss wie E aussieht, also welche
> Elemente noch in E' vorhanden sind..
>  
> Vielen Dank für die Antworten!
>  SA
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]