matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Graph - Funktionsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Graph - Funktionsgleichung
Graph - Funktionsgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph - Funktionsgleichung: Parabel
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 16.10.2006
Autor: Informacao

Hallo,

also irgendwie kann ich mich nicht mehr an die Sachen erinnern, die wir mal gemacht haben. Auf meinem Arbeitsblatt stheen 4 Graphen einer Parabel. ich soll einmal die funktionsgleichung in scheitelpunktform und einmal in normalform bestimmen.

also ein beispiel:

(ich beschreibe mal den graph)
er hat seinen scheitelpunkt bei 1 auf der y-achse und die parabel ist nach oben geöffnet. wenn ich auf der x-achse eins nach rechts gehe muss ich 0,5 nach oben gehen, um auf den graphen zu stoßen. das heißt also, dass er gestaucht ist. Aber könnt ihr mir vll an diesem beispiel mal erklären, wie ich das jetzt machen muss??

wäre sehr gut
informacao

        
Bezug
Graph - Funktionsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mo 16.10.2006
Autor: hase-hh

moin,

welche x-koordinate hat dein scheitelpunkt, der bei eins die y-koordinate berührt (? / 1) ???

die scheitelpunktform sieht allgemein so aus:

y= [mm] a*(x-b)^2 [/mm] +c   hieraus kann ich sofort den Scheitelpunkt ablesen

nämlich S (b / c) !

falls deine parabel gestaucht, gestreckt oder nach unten geöffnet ist, ist a [mm] \ne [/mm] 1.

will ich eine parabel in die scheitelform bringen, muss ich den öffnungsfaktor a ausklammern, dann ggf. quadratisch ergänzen, so dass ich  den teil [mm] x^2+rx+t [/mm] als binom schreiben kann...

die normalform einer parabel lautet:

[mm] x^2 [/mm] + px + q     [also keinen öffnungsfaktor vor dem [mm] x^2 [/mm] bzw. a=1!!]

immer dann hilfreich, wenn ich mittels pq-formel nullstellen bestimmen will, o.ä.

gruss
wolfgang










Bezug
                
Bezug
Graph - Funktionsgleichung: sorry
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 16.10.2006
Autor: Informacao

ach tut mir leid, hatte ich vergessen: die x-koordinate hat den wert 0.

Bezug
        
Bezug
Graph - Funktionsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 16.10.2006
Autor: Nienor

Hi,
am einfachsten ist es von der Zeichnung auf die Scheitelpunktform zu schließen, weil du da einfach nur einzu setzen brauchst. Die Scheitelpunktform im allgemeinen ist
a(x+b)²+c
Der Scheitelpunkt wäre dann S(-b;c) also in deinem Fall bei S(0;1)
a ist der Streckungs-bzw.Stauchungsfaktor, bei dir ist a schätzungsweise 0,5
d.h deine Gleichung wäre: 0,5x²+1
Ok, das ist ein schlechtes Bsp für die Scheitelpunktform, weil die Verschiebung in x-Richtung fehlt, aber das Prinzip ist dasselbe. Zur Normalenform kommst du von dort aus, indem du es einfach ausmultiplizierst , sodass dann dasteht ax²+bx+c (allgemeine Form) bzw. x²+px+q (Normalform)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]