matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGramschen Determinante
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Gramschen Determinante
Gramschen Determinante < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gramschen Determinante: Anschauliches Beispiel
Status: (Frage) überfällig Status 
Datum: 16:16 Fr 26.09.2008
Autor: Ninjoo

Aufgabe
Beschreiben Sie, wie man mit Hilfe der Gramschen Determinante das Volumen eines Tetraeders berechnen kann. Überlegen Sie dazu (ohne Beweis!), wie man aus volumengleichen Tetraedern ein 3-dimensoinales Parallelepiped bauen kann bzw. wie man ein Parallelepiped in volumensgleiche Tetraeder zerlegen kann.

Ich verstehe nicht so richtig was man hier machen soll.

Meine Argumentation wäre:

Angenommen wir sind in einem n-dimensionalen Raum und haben einen n Dimensionalen Spat, der von n linear unabhängigen Richtungsvektoren v1,..,vN aufgespannt ist.

Sei A die Matrix die die linear unabhängigen Richtungsvektoren v1,...,vN in den Spalten zu stehen hat.

Dann ist die Determinante der Matrix A, das selbe wie die Wurzel der Gramdeterminate von v1,...vN. (Stimmt das?)

Wenn die Vektoren linear abhängig sind, ist das Volumen Null, da der Spat sich nicht aufspannen kann.

Der einzige Unterschied zwischen der Determinate und der Gramdeterminate ist doch, bzgl dem Ausrechnen von Volumen, dass man mit der Gramdeterminante in einem n-Dimensionalen raum, auch von Objekten der Dimesion 1,...,n-1 das Volumen bestimmen kann, oder?

Meine Antwort auf die Frage wär also, wenn v1,v2,v3 das Tetraeder aufspannen, so ist das Volumen davon gleich die hälfte von der Wurzel der Gramdeterminante, da die Wurzel der Gramdeterminate das Spatvolumen von v1,v2,v3 gibt, und 2 Tetraeder genau ein Spat sind. Man könnte auch einfach v1,v2,v3 in eine Matrix schreiben , die Determinate der Matrix ausrechnen und diese halbieren, das wäre doch auch das Volumen des gesuchten Tetraeders, oder?

Gibt es auch eine Möglichkeit das Volumen zu berechnen, ohne die Gramdeterminante zu halbieren?

Ist das eigentlich alles falsch was ich geschrieben habe :D?

Gruss Ninjoo

        
Bezug
Gramschen Determinante: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 So 28.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]