matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGramsche Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Gramsche Matrix
Gramsche Matrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gramsche Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:14 Mi 13.02.2013
Autor: Hero991

Aufgabe
Es sei [mm] \lambda [/mm] ∈ [mm] \IR [/mm] beliebig und σ : [mm] \IR^3 [/mm] × [mm] \IR^3 [/mm] → [mm] \IR, [/mm]
σ [mm] \pmat{ \vektor{x_1 \\ x_2 \\ x_3 }, \vektor{y_1 \\ y_2 \\ y_3 } }:=\lambda(x_1y_1) [/mm] + [mm] x_1y_2 [/mm] + [mm] x_2y_1 [/mm] + [mm] x_2y_2 [/mm] + (8 − [mm] \lambda)x_3y_3 [/mm]

a.) Zeigen Sie, dass σ eine symmetrische Bilinearform ist.
b.)Berechnen Sie die Gramsche Matrix von σ in der Standardbasis.
c.) Berechnen Sie die Gramsche Matrix von σ in der Basis.

Hallo, ich brauche eure Hilfe weil ich bei der c.) keinen Ansatz hinbekomme.
a.) und b.) sind Erledigt aber wie mach ich die c.)?
Bei der a.) habe ich symmetrische Bilinearform gezeigt durch das Verwenden der Axiome.
bei der b.) habe ich folgendes raus:
[mm] \pmat{ \lambda & 1 & 0\\ 1 & 1 & 0 \\ 0 & 0 & 8-\lambda }. [/mm]

Ich habe aber einfach nur abgelesen und eingesetzt. Da hab ich nicht gerechnet.

aber bei der c.) weiß ich einfach nicht was ich machen soll.
Wie soll ich da rechnen?


Mit freundlichen Grüßen
Hero

        
Bezug
Gramsche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:03 Mi 13.02.2013
Autor: angela.h.b.


> Es sei [mm]\lambda[/mm] ∈ [mm]\IR[/mm] beliebig und σ : [mm]\IR^3[/mm] × [mm]\IR^3[/mm] →
> [mm]\IR,[/mm]
>  σ [mm]\pmat{ \vektor{x_1 \\ x_2 \\ x_3 }, \vektor{y_1 \\ y_2 \\ y_3 } }:=\lambda(x_1y_1)[/mm]
> + [mm]x_1y_2[/mm] + [mm]x_2y_1[/mm] + [mm]x_2y_2[/mm] + (8 − [mm]\lambda)x_3y_3[/mm]
>  
> a.) Zeigen Sie, dass σ eine symmetrische Bilinearform
> ist.
>  b.)Berechnen Sie die Gramsche Matrix von σ in der
> Standardbasis.
>  c.) Berechnen Sie die Gramsche Matrix von σ in der
> Basis.

Hallo,

bzgl. welcher Basis denn?


Sei [mm] B:=(b_1,b_2,b_3), [/mm]

dann ist [mm] A:=(a_i_k) [/mm] mit [mm] a_i_k:=\sigma(b_i,b_k) [/mm] die Gramsche Matrix [mm] von\sigma [/mm] bzgl.B.

LG Angela



>  Hallo, ich brauche eure Hilfe weil ich bei der c.) keinen
> Ansatz hinbekomme.
>  a.) und b.) sind Erledigt aber wie mach ich die c.)?
>  Bei der a.) habe ich symmetrische Bilinearform gezeigt
> durch das Verwenden der Axiome.
>  bei der b.) habe ich folgendes raus:
> [mm]\pmat{ \lambda & 1 & 0\\ 1 & 1 & 0 \\ 0 & 0 & 8-\lambda }.[/mm]
>  
> Ich habe aber einfach nur abgelesen und eingesetzt. Da hab
> ich nicht gerechnet.
>  
> aber bei der c.) weiß ich einfach nicht was ich machen
> soll.
> Wie soll ich da rechnen?
>  
>
> Mit freundlichen Grüßen
>  Hero


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]