matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGram-Schmidt bei Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Gram-Schmidt bei Polynomen
Gram-Schmidt bei Polynomen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt bei Polynomen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:49 So 03.01.2010
Autor: Aoide

Aufgabe
Wir befinden uns im euklidischen Raum der Polynome [mm] R_{\le2}[x] [/mm] mit dem Skalarprodukt
<r(x), s(x)> := [mm] r_{2}s_{2} [/mm] + [mm] 2r_{1}s_{1} [/mm] + [mm] r_{0}s_{0} [/mm]
mit r(x)= [mm] r_{2}x^2 [/mm] + [mm] r_{1}x +r_{0} [/mm]
und s(x)= [mm] s_{2}x^2 [/mm] + [mm] s_{1}x +s_{0} [/mm]

und der Basis = [mm] \{p_{1}(x), p_{2}(x), p_{3}(x)\} [/mm]
mit [mm] p_{1}(x)= x^2 [/mm] + x + 1
     [mm] p_{2}(x)= 6x^2 [/mm] + 2
     [mm] p_{3}(x)= [/mm] 3

Daraus soll eine Orthonormalbasis nach dem Verfahren von Gram-Schmidt berechnet werden!

Ich hänge in dieser Aufgabe etwas am Verständnis.
Wenn das Skalarprodukt sich in der AUfgabenstellung auf r(x) und s(x) bezieht, kann ich das dann beliebig auf p(x) umwandeln?

Ich würde dann [mm] q_{1} [/mm] z.B. so berechnen:

[mm] q_{1}(x)= \bruch{p_{1}(x)}{||p_{1}(x)||} [/mm]

[mm] ||p_{1}(x)|| [/mm] = [mm] \wurzel {} [/mm]

[mm] [/mm] = [mm] x^2*x^2 [/mm] + 2x*x + 1*1 = [mm] x^4 [/mm] + [mm] 2x^2 [/mm] + 1 = [mm] (x^2 +1)^2 [/mm]

Daraus die Wurzel = [mm] x^2 [/mm] + 1

Also für [mm] q_{1}= \bruch {x^2+ x + 1}{x^2 + 1}. [/mm]

Das wäre ein Anfang. Wenn ich aber nun mit [mm] q_{1} [/mm] bei [mm] q_{2} [/mm] weiter rechne, dann komme ich auf sehr unschöne Ergebnisse. Deshalb bin ich mir nicht sicher, ob ich das Skalarprodukt aus der Aufgabenstellung immer einsetzen muss:

[mm] q_{2}= \bruch{l_{2}(x)}{||l_{2}(x)||} [/mm]
[mm] l_{2}(x) [/mm] = [mm] p_{2}(x) [/mm] - [mm] *q_{1}(x) [/mm]
= [mm] (6x^2 [/mm] + 2 [mm] )-\wurzel{\bruch{6x^3+2}{x^2 +1}} [/mm] * [mm] \bruch{x^2 + x + 1}{x^2 + 1} [/mm]

usw.  Das hab ich dann ausmultipliziert und es kommen einfach endlos lange Polynome raus, das kann einfach nicht stimmen!

Wo liegt denn der Fehler?
Danke für die kurzfristige Hilfe!

        
Bezug
Gram-Schmidt bei Polynomen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 So 03.01.2010
Autor: Aoide

Oh ich glaube, ich habe meinen Fehler gefunden!
Es muss heißen
[mm] [/mm] = 1*1 + 2*1*1 + 1*1 = 4
Daraus die Wurzel = 2

Also [mm] q_{1} [/mm] = [mm] \bruch{1}{2} [/mm] * [mm] (x^2 [/mm] + [mm] x^2 [/mm] +1) = [mm] 0,5x^2 [/mm] + 0,5x + 0,5

Das ist richtiger, nicht wahr?



Bezug
        
Bezug
Gram-Schmidt bei Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 04.01.2010
Autor: angela.h.b.


> Wir befinden uns im euklidischen Raum der Polynome
> [mm]R_{\le2}[x][/mm] mit dem Skalarprodukt
> <r(x), s(x)> := [mm]r_{2}s_{2}[/mm] + [mm]2r_{1}s_{1}[/mm] + [mm]r_{0}s_{0}[/mm]
>  mit r(x)= [mm]r_{2}x^2[/mm] + [mm]r_{1}x +r_{0}[/mm]
>  und s(x)= [mm]s_{2}x^2[/mm] +
> [mm]s_{1}x +s_{0}[/mm]
>  
> und der Basis = [mm]\{p_{1}(x), p_{2}(x), p_{3}(x)\}[/mm]
>  mit
> [mm]p_{1}(x)= x^2[/mm] + x + 1
>       [mm]p_{2}(x)= 6x^2[/mm] + 2
>       [mm]p_{3}(x)=[/mm] 3
>
> Daraus soll eine Orthonormalbasis nach dem Verfahren von
> Gram-Schmidt berechnet werden!
>  Ich hänge in dieser Aufgabe etwas am Verständnis.
>  Wenn das Skalarprodukt sich in der AUfgabenstellung auf
> r(x) und s(x) bezieht, kann ich das dann beliebig auf p(x)
> umwandeln?
>  
> Ich würde dann [mm]q_{1}[/mm] z.B. so berechnen:
>  
> [mm]q_{1}(x)= \bruch{p_{1}(x)}{||p_{1}(x)||}[/mm]
>  
> [mm]||p_{1}(x)||[/mm] = [mm]\wurzel {}[/mm]
>  
> [mm][/mm] = [mm]x^2*x^2[/mm] + 2x*x + 1*1 = [mm]x^4[/mm] + [mm]2x^2[/mm] +
> 1 = [mm](x^2 +1)^2[/mm]
>  
> Daraus die Wurzel = [mm]x^2[/mm] + 1
>  
> Also für [mm]q_{1}= \bruch {x^2+ x + 1}{x^2 + 1}.[/mm]
>  
> Das wäre ein Anfang. Wenn ich aber nun mit [mm]q_{1}[/mm] bei [mm]q_{2}[/mm]
> weiter rechne, dann komme ich auf sehr unschöne
> Ergebnisse. Deshalb bin ich mir nicht sicher, ob ich das
> Skalarprodukt aus der Aufgabenstellung immer einsetzen
> muss:
>  
> [mm]q_{2}= \bruch{l_{2}(x)}{||l_{2}(x)||}[/mm]
>  [mm]l_{2}(x)[/mm] = [mm]p_{2}(x)[/mm]
> - [mm]*q_{1}(x)[/mm]
>  = [mm](6x^2[/mm] + 2
> [mm])-\wurzel{\bruch{6x^3+2}{x^2 +1}}[/mm] * [mm]\bruch{x^2 + x + 1}{x^2 + 1}[/mm]
>  
> usw.  Das hab ich dann ausmultipliziert und es kommen
> einfach endlos lange Polynome raus, das kann einfach nicht
> stimmen!
>  
> Wo liegt denn der Fehler?
>  Danke für die kurzfristige Hilfe!

EDIT:
>Oh ich glaube, ich habe meinen Fehler gefunden!
>Es muss heißen
>$ [mm] [/mm] $ = 1*1 + 2*1*1 + 1*1 = 4
>Daraus die Wurzel = 2
>
>Also $ [mm] q_{1} [/mm] $ = $ [mm] \bruch{1}{2} [/mm] $ * $ [mm] (x^2 [/mm] $ + $ [mm] x^2 [/mm] $ +1) = $ [mm] 0,5x^2 [/mm] $ + 0,5x + 0,5
>
>Das ist richtiger, nicht wahr?

Hallo,

ja, so geht's.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]