matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeGram-Schmidt / QR-Zerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Gram-Schmidt / QR-Zerlegung
Gram-Schmidt / QR-Zerlegung < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt / QR-Zerlegung: wie gemeint?
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 26.11.2004
Autor: Bastiane

Hallo!
So, hab' mir jetzt immerhin schon das Gram-Schmidt-Verfahren angeguckt...

Meine Aufgaben lautet:
Stelle die Gram-Schmidt Orthonormalisierung als Verfahren zur QR-Zerlegung einer Matrix [mm] A\in\IR^{n\times n} [/mm] dar.

Ich habe jetzt schon mal festgestellt, dass man beim Gram-Schmidt-Verfahren ja eine orthonormale Basis findet und bei der QR-Zerlegung erhält man eine orthogonale Matrix. Die beiden könnten also etwas "miteinander zu tun" haben.
Ich verstehe aber schon mal die Aufgabenstellung nicht so ganz:
Soll ich jetzt mithilfe des Gram-Schmidt-Verfahrens eine QR-Zerlegung machen oder mit der QR-Zerlegung eine orthonormale Basis finden?

Hat vielleicht außerdem jemand noch einen Tipp, wie ich da ansetzen könnte?

Viele Grüße
Bastiane
[winken]

        
Bezug
Gram-Schmidt / QR-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Mo 29.11.2004
Autor: Stefan

Liebe Christiane!

Ich denke du sollst zeigen, wie man mit Hilfe des Gram-Schmidt-Verfahrens auf die QR-Zerlegung kommt.

Das ginge dann so:

Es sei [mm] $A=\begin{pmatrix} a_1 & a_2 & \ldots & a_n \end{pmatrix}$, [/mm] d.h. [mm] $a_k$ [/mm] sei die $k$-te Spalte der Matrix $A$.

1) Setze für [mm] $k=1,2,\ldots,n$: [/mm]

[mm] $q_k' [/mm] := [mm] a_k$. [/mm]

2) Berechne für [mm] $i=1,2,\ldots,k-1$: [/mm]

[mm] $r_{ik} [/mm] = [mm] q_i^T a_k$, [/mm]
[mm] $q_k' [/mm] = [mm] q_k' [/mm] - [mm] r_{ik} q_i$. [/mm]

3) Berechne:

[mm] $r_{kk}:= \Vert q_k' \Vert_2$. [/mm]

4) Setze:

[mm] $q_k:= \frac{q_k'}{r_{kk}}$. [/mm]

5) Setze:

$Q:= [mm] \begin{pmatrix}q_1 & q_2 & \ldots & q_n \end{pmatrix}$ [/mm]

$R:= [mm] \begin{pmatrix} r_{11} & r_{12}& \ldots & r_{1,n-1}& r_{1n} \\ 0 & r_{22} & \ldots & r_{2,n-1} & r_{2n} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & r_{n-1,n-1} & r_{n-1,n} \\ 0 & \ldots & 0 & 0 & r_{nn} \end{pmatrix}$. [/mm]

Aus dem Algorithmus ist ersichtlich, dass

[mm] $q_k' =a_k [/mm] - [mm] \sum\limits_{i=1}^{k-1} r_{ik} q_i$ [/mm]

und somit:

[mm] $a_k [/mm] = [mm] \sum\limits_{i=1}^k r_{ik} q_i$ [/mm]

gilt, also:

$A=Q [mm] \cdot [/mm] R$.

Die Orthogonalität von $Q$ wurde bei der Behandlung des Gram-Schmidt-Verfahren bereits gezeigt.

Ich hoffe ich konnte dir damit noch rechtzeitig helfen (jedenfalls ist die Fälligkeit noch nicht abgelaufen :-)).

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]