matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGram-Schmidt-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gram-Schmidt-Verfahren
Gram-Schmidt-Verfahren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Schmidt-Verfahren: im R^4
Status: (Frage) beantwortet Status 
Datum: 18:10 So 10.09.2006
Autor: hooover

Aufgabe
[mm] \overrightarrow{v_{1}}=\vektor{1 \\ 1 \\ 0 \\ 0}, \overrightarrow{v_{2}}=\vektor{1 \\ 1 \\ 1 \\ 0}, \overrightarrow{v_{3}}=\vektor{1 \\ 0 \\ 1 \\ 0}, \overrightarrow{v_{4}}=\vektor{0 \\ 1 \\ 0 \\ 1} [/mm]

Wende das Gram Schmidt Verfahren auf die Basis [mm] B={\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}} [/mm] an ,um diese Basis in eine Orthonormalbasis [mm] B_{0}={{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \overrightarrow{w_{3}}, \overrightarrow{w_{4}} }} [/mm] umzurechnen.

Einen schönen Sonntag euch allen,

ich hab das gemacht und wollte wissen ob meine Lsg. richtig ist.

Da das sehr viel Tippaufwand ist, werd ich erstmal nur meinen Lösungsweg mit der dazugehörigen Lösung presntieren, wenn das ok ist.

Wenn ich fehler gemacht habe erläutere ich gern meine einzelnen Rchenschritte
also

[mm] \overrightarrow{v_{1}}\not=\overrightarrow{w_{1}}=\frac{\overrightarrow{v_{1}}}{||\overrightarrow{v_{1}}||} [/mm]

[mm] \overrightarrow{l_{2}}=\overrightarrow{v_{2}}-<\overrightarrow{v_{2}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}=\overrightarrow{w_{2}} [/mm]

[mm] \overrightarrow{l_{3}}=\overrightarrow{v_{3}}-<\overrightarrow{v_{3}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}-<\overrightarrow{v_{3}},\overrightarrow{w_{2}}>\overrightarrow{w_{2}}=\overrightarrow{w_{3}} [/mm]

[mm] \overrightarrow{l_{4}}=\overrightarrow{v_{4}}-<\overrightarrow{v_{4}},\overrightarrow{w_{1}}>\overrightarrow{w_{1}}-<\overrightarrow{v_{4}},\overrightarrow{w_{2}}>\overrightarrow{w_{2}}-<\overrightarrow{v_{4}},\overrightarrow{w_{3}}>\overrightarrow{w_{3}} [/mm]


[mm] \frac{\overrightarrow{l_{4}}}{||\overrightarrow{l_{4}}||}=\overrightarrow{w_{4}} [/mm]




$ONB [mm] =(\vektor{\frac{1}{\wurzel{2}} \\ \frac{1}{\wurzel{2}} \\0 \\ 0}, \vektor{-1 \\ -1 \\ 1 \\ 0},\vektor{-\frac{1}{2} \\ 0 \\ 0\\ 0},\vektor{0 \\ -\frac{2}{5} \\ 0 \\ \frac{4}{5}})$ [/mm]

Vielen Dank für eure Hilfe Gruß hooover



        
Bezug
Gram-Schmidt-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 10.09.2006
Autor: EvenSteven

Für den Gramschmidt musst du noch ein Skalarprodukt angeben.
Ich nehme mal an, es sollte das Standardskalarprodukt sein (auch Euklidisches Skalarprodukt genannt). In diesem Fall hast du falsch gerechnet, denn ausser den letzten beiden Vektoren sind keine orthogonal zueinander.
Allgemein:
Man setzt (wie du richtig gemacht hast)
[mm] $l_{1}=v_{1}$ [/mm]

Die Formel für den jeweils nächsten Vektor berechnet sich zu

[mm] $l_{k+1}= v_{k+1} [/mm] - [mm] \summe_{i=1}^{k} \bruch{(v_{k+1},l_{i})}{(l_{i},l_{i})}*l_{i}$ [/mm]

Wobei [mm] $v_{k}$ [/mm] die gegebenen "Startvektoren" sind und [mm] $l_{k}$ [/mm] der zu den bereits berechneten Vektoren orthogonale ist. Am Schluss muss man noch die Vektoren [mm] $l_{k}$ [/mm] normieren, damit du auch eine Orthonormalbasis hast.

Rechne das mal so durch und du kriegst (hoffentlich) etwas sinnvolleres ;-)

Ciao

EvenSteven

Bezug
                
Bezug
Gram-Schmidt-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 10.09.2006
Autor: hooover

Hallo,

ok ich habe das alles nochmal nachvollzogen und gesehen das ich da einige fehler gemacht habe

bin mir aber dennoch nicht sicher ob das stimmt,

hier ist die nachgebesserte Lsg.:


$ ONB [mm] =(\frac{1}{\wurzel{2}}\vektor{1 \\ 1 \\0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0},\wurzel{2}\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0},\frac{1}{\wurzel{6}}\vektor{-2 \\ 1 \\ 0 \\ 1 }) [/mm] $

vielen DAnk gruß hooover

Bezug
                        
Bezug
Gram-Schmidt-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 So 10.09.2006
Autor: EvenSteven


> Hallo,
>  
> hier ist die nachgebesserte Lsg.:
>  
>
> [mm]ONB =(\frac{1}{\wurzel{2}}\vektor{1 \\ 1 \\0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0},\wurzel{2}\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0},\frac{1}{\wurzel{6}}\vektor{-2 \\ 1 \\ 0 \\ 1 })[/mm]
>
> vielen DAnk gruß hooover

Ja das sieht schon viel besser aus. Die ersten drei sind richtig, doch der letzte ist z.B. nicht orthogonal zum ersten Vektor. Das wäre der richtige:
[mm] $\vektor{0 \\ 0 \\ 0 \\ 1 }$ [/mm]
Tipp: Der zweite Summand, den du abziehen musst, des letzten Schrittes von Gram-Schmidt ist Null, da [mm] $v_{4}$ [/mm] orthogonal zu [mm] $l_{2}$ [/mm] ist.

Tschüss

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]