matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikGradientenverfahren, Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Gradientenverfahren, Menge
Gradientenverfahren, Menge < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradientenverfahren, Menge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:21 Di 15.01.2013
Autor: EvelynSnowley2311

Aufgabe
Sei F eine stetig differenzierbare Funktion : [mm] \IR^n \to \IR [/mm] , [mm] x^{(0)} \in \IR^n [/mm] gegeben. Die Menge  [mm] L(x^{(0)}) [/mm] := {x [mm] \in \IR^n [/mm] | F(x) [mm] \le F(x^{(0))} [/mm] } sei beschränkt.
Das Gradientenverfahren breche nicht nach endlich vielen Schritten ab, also [mm] d^{(m)} \not= [/mm] 0 für alle m  [mm] \in \IN [/mm]


Zeigen Sie:


Dann gilt:

i)  für jedes m [mm] \in \IN [/mm] gibt es ein [mm] \varepsilon_m [/mm] > 0 mit [mm] x^{(m)} \in L(x^{(0)} \Rightarrow x^{(m)} [/mm] + [mm] td^{(m)} \in L(x^{(0)}) [/mm] für alle t [mm] \in [/mm] [0, [mm] \varepsilon_m] [/mm]  , es gilt sogar  [mm] F(x^{(m)} +td^{(m)}) [/mm] < [mm] F(x^{(m)} [/mm] für alle t [mm] \in [/mm] [0, [mm] \varepsilon_m] [/mm] .

ii)die Folge [mm] F(x^{(m)}) [/mm] konvergiert in [mm] \IR [/mm] .

iii) die Folge [mm] F(x^{(m)}) [/mm] ist beschränkt.

Huhu,

Ja die Aufgabe sieht hammer schwer aus, ist sie wahrscheinlich auch^^ Unsere Definition des Gradientenverfahren:

Sei [mm] x^{(0)} \in \IR^n [/mm]  gegeben. Für m = 1,2,... berechne:

[mm] d^{(m)} [/mm] = - [mm] F´(x^{(m)})^t [/mm]
Ist  [mm] d^{(m)} [/mm] = 0  , so stoppe. Sonst bestimme [mm] t^{(m)} \in [0,\infty) [/mm] sodass

[mm] F(x^{(m)} [/mm] +  [mm] t^{(m)} d^{(m)} [/mm] )= [mm] inf_{s \in [0,\infty) } F(x^{(m)} [/mm] +  s [mm] d^{(m)} [/mm] )

Setze dann [mm] x^{( m+1)} [/mm] =  [mm] x^{(m)} [/mm] +  [mm] t^{(m)} d^{(m)} [/mm]



Der Punkt 3 ist denke ich klar durch Definition der Menge und der Stetigkeitseigenschaft.

Punkt 2 mit der Konvergenz muss ich wohl noch Monotonie zeigen ( fallend soviel ich theoretisch weiß)

Aber was fang ich mitPunkt 1 an? Das sieht so schwer aus.... Hoffentlich könnt ihr mir da helfen...^^



Lg,

Eve

        
Bezug
Gradientenverfahren, Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 17.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]