matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradientenvektorfeld
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradientenvektorfeld
Gradientenvektorfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradientenvektorfeld: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:19 So 23.06.2013
Autor: capri

Aufgabe
Man untersuche, welche der folgenden Vektorfelder Gradientenvektorfelder sind, und bestimme gegebenfalls die Stammfunktion.

[mm] f(x,y)=(2x+2xy^4,4y^3x^2+3y^2) [/mm]      

g(x,y)=(x [mm] sin(y),x^2 [/mm] cos(y))

Hallo, ein Kollege von mir meinte, wenn ich fragen habe würdet Ihr mir helfen. :)

da ich bei der Aufgabe nicht weiter komme, hoffe ich, dass ich hier richtig bin.

Ich weiß nicht, was ich machen soll bei der Aufgabe. Ein Gradient ist ja die erste Ableitung.
Muss ich also hier gucken,ob f(x,y) eine Stammfunktion hat und daraus schließt sich dann, dass das Vektorfeld ein Gradientenvektorfeld ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gradientenvektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 So 23.06.2013
Autor: fred97


> Man untersuche, welche der folgenden Vektorfelder
> Gradientenvektorfelder sind, und bestimme gegebenfalls die
> Stammfunktion.
>  
> [mm]f(x,y)=(2x+2xy^4,4y^3x^2+3y^2)[/mm]      
>
> g(x,y)=(x [mm]sin(y),x^2[/mm] cos(y))
>  Hallo, ein Kollege von mir meinte, wenn ich fragen habe
> würdet Ihr mir helfen. :)
>  
> da ich bei der Aufgabe nicht weiter komme, hoffe ich, dass
> ich hier richtig bin.
>  
> Ich weiß nicht, was ich machen soll bei der Aufgabe. Ein
> Gradient ist ja die erste Ableitung.
>  Muss ich also hier gucken,ob f(x,y) eine Stammfunktion hat
> und daraus schließt sich dann, dass das Vektorfeld ein
> Gradientenvektorfeld ist?
>  

Ja

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Gradientenvektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 So 23.06.2013
Autor: capri

Ok. Das ist schonmal gut.
Aber welche Stammfunktion soll ich denn nehmen habe ja zwei Variablen.

[mm] (2x+2xy^4,4y^3x^2+3y^2) [/mm]

wenn ich jetzt [mm] 2x+2xy^4 [/mm] davon die Stammfunktion bilde, komme ich auf
[mm] x^2y^4+x^2 [/mm] wenn ich es nach x bilde und bei [mm] 4y^3x^2+3y^2 [/mm] komm ich auf [mm] \bruch{4}{3}x^3y^3+3xy^2 [/mm]

müsste ich es dann nocheinmal nach y bilden und dann bin ich fertig oder?


Bezug
                        
Bezug
Gradientenvektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 So 23.06.2013
Autor: fred97


> Ok. Das ist schonmal gut.
>  Aber welche Stammfunktion soll ich denn nehmen habe ja
> zwei Variablen.
>  
> [mm](2x+2xy^4,4y^3x^2+3y^2)[/mm]
>  
> wenn ich jetzt [mm]2x+2xy^4[/mm] davon die Stammfunktion bilde,
> komme ich auf
> [mm]x^2y^4+x^2[/mm] wenn ich es nach x bilde und bei [mm]4y^3x^2+3y^2[/mm]
> komm ich auf [mm]\bruch{4}{3}x^3y^3+3xy^2[/mm]
>  
> müsste ich es dann nocheinmal nach y bilden und dann bin
> ich fertig oder?
>  


Wir machen für eine Stammfunktion F den Ansatz

    [mm] F_x= 2x+2xy^4, F_y=4y^3x^2+3y^2. [/mm]

Dann ist [mm] F=x^2+x^2y^4+c(y) [/mm]

mit einer Funktion c , die noch zu bestimmen ist

Es folgt: [mm] F_y=4x^2y^3+c'(y) [/mm]

Also haben wir: [mm] 4x^2y^3+c'(y)=4y^3x^2+3y^2. [/mm]

Damit ist [mm] c'(y)=3y^2. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]