matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGradient und Hessenmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Gradient und Hessenmatrix
Gradient und Hessenmatrix < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient und Hessenmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Do 05.06.2014
Autor: Coxy

Aufgabe
Das elektrische Potential einer Punktladung im Koordinatenursprung ist durch folgende Funktion gegeben:
[mm] phi(\overrightarrow{x})=\bruch{Q}{4\Pi*E*|\overrightarrow{x}}| [/mm]
Bestimme das elektrische Feld [mm] \overrightarrow{E}(x1, [/mm] x2, x3)
Hinweis:  [mm] \overrightarrow{E}=- \overrightarrow{Nabla Operator}*phi [/mm]

Ich habe leider nicht so ganz verstanden wie ich vorgehen muss.
angenommen
[mm] \overrightarrow{x}= \vektor{x \\ y \\z} [/mm]
Soll ich [mm] phi(\overrightarrow{x}) [/mm] dann nach x, y und z ableiten und daraus die Hessenmatrix bilden oder muss ich irgendwie anders vorgehen um das elektrische Feld zu bestimmen?


        
Bezug
Gradient und Hessenmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Do 05.06.2014
Autor: chrisno

[mm] $\vec{\nabla} [/mm] = [mm] \vektor{\br{\partial}{\partial x} \\ \br{\partial}{\partial y} \\ \br{\partial}{\partial z} }$ [/mm]
Rechne [mm] $-\vec{\nabla} \phi(\vec{x})$ [/mm] aus.

Bezug
                
Bezug
Gradient und Hessenmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Fr 06.06.2014
Autor: Coxy

Ich bekomme für
[mm] f(x)=\bruch{Q}{4\pi*E*\wurzel{(x^2+y^2+z^2)}} [/mm]
Meine 3 Ableitungen nach den Variablen sind dann
[mm] f(x)/dx=\bruch{Q*x}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} [/mm]
[mm] f(x)/dy=\bruch{Q*y}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} [/mm]
[mm] f(x)/dz=\bruch{Q*z}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} [/mm]

Somit ist mein elektrisches Feld

[mm] E=-\vektor{\bruch{Q*x}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} \\ \bruch{Q*y}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} \\ \bruch{Q*z}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} } [/mm]

wobei x1=x, x2=y, x3=z
Ist das korrekt?

Bezug
                        
Bezug
Gradient und Hessenmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Fr 06.06.2014
Autor: chrisno


> Ich bekomme für
>  [mm]f(x)=\bruch{Q}{4\pi*E*\wurzel{(x^2+y^2+z^2)}}[/mm]
>  Meine 3 Ableitungen nach den Variablen sind dann
>  [mm]f(x)/dx=\bruch{Q*x}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}}[/mm]
>  [mm]f(x)/dy=\bruch{Q*y}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}}[/mm]
>  [mm]f(x)/dz=\bruch{Q*z}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}}[/mm]
>  
> Somit ist mein elektrisches Feld
>  
> [mm]E=-\vektor{\bruch{Q*x}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} \\ \bruch{Q*y}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} \\ \bruch{Q*z}{4\pi*E*(x^2+y^2+z^2)^{\bruch{3}{2}}} }[/mm]
>  

[ok] doch ist das E im Nenner nicht das E des Feldes
$ = [mm] \bruch{-Q}{4\pi*\epsilon*|r|^3} \vec{r}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]