matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient & Richtungsableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient & Richtungsableitung
Gradient & Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient & Richtungsableitung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 30.07.2009
Autor: jojo1484

Aufgabe
Gegeben sei die Funktion f(x,y) = [mm] cos(x)e^{y} [/mm] für (x,y) [mm] \in\IR² [/mm]

1. Berechnen Sie den Gradienten der Funktion.

2. In welcher richtung wächst die Funktion im Punkt [mm] (x_{0},y_{0}) [/mm] = [mm] (\bruch{\pi}{4},0) [/mm] am stärksten

3. Bestimmen Sie für die Richtung [mm] \omega [/mm] = [mm] \bruch{1}{\wurzel{2}} [/mm] (1,1) die Richtungsableitung [mm] \bruch{\partial f}{\partial\omega} (\bruch{\pi}{4},0) [/mm]  .

1.

Um den Gradienten zu berechnen habe ich zunächst die ersten Ableitungen bestimmt:

f'_{x} (x,y) = [mm] -sin(x)*e^{y} [/mm]

f'_{y} (x,y) = [mm] cos(x)*e^{y} [/mm]

und habe daraus den Gradienten bestimmt:

grad = [mm] \pmat{ -sin(x)*e^{y} \\ cos(x)*e^{y} } [/mm]

2. Um die Richtung zu finden, in welche die Funktion im Punkt [mm] (\bruch{\pi}{4},0) [/mm] am meisten wächst, setzte ich die Werte für x und y in die Matrix des Gradienten ein.

Das Ergebnis x = 0,0137 und y = 0,9999  zeigt mir,
dass die Funktion im Pumkt am stärkstens in y Richtung wächst.


3. Ich habe überhaupt kein plan wie ich diese Richtungsableitung bestimmen soll. Wäre super wenn mir jemand helfen könnte.

Vielen Dank für Euer bemühen.

Mit freundlichen Grüßen

Jojo

        
Bezug
Gradient & Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Do 30.07.2009
Autor: fred97


> Gegeben sei die Funktion f(x,y) = [mm]cos(x)e^{y}[/mm] für (x,y)
> [mm]\in\IR²[/mm]
>  
> 1. Berechnen Sie den Gradienten der Funktion.
>  
> 2. In welcher richtung wächst die Funktion im Punkt
> [mm](x_{0},y_{0})[/mm] = [mm](\bruch{\pi}{4},0)[/mm] am stärksten
>  
> 3. Bestimmen Sie für die Richtung [mm]\omega[/mm] =
> [mm]\bruch{1}{\wurzel{2}}[/mm] (1,1) die Richtungsableitung
> [mm]\bruch{\partial f}{\partial\omega} (\bruch{\pi}{4},0)[/mm]  .
>  1.
>
> Um den Gradienten zu berechnen habe ich zunächst die
> ersten Ableitungen bestimmt:
>  
> f'_{x} (x,y) = [mm]-sin(x)*e^{y}[/mm]
>  
> f'_{y} (x,y) = [mm]cos(x)*e^{y}[/mm]


Lass die striche weg ! [mm] f_{x}(x,y) [/mm]


>  
> und habe daraus den Gradienten bestimmt:
>  
> grad = [mm]\pmat{ -sin(x)*e^{y} \\ cos(x)*e^{y} }[/mm]


Richtig


>  
> 2. Um die Richtung zu finden, in welche die Funktion im
> Punkt [mm](\bruch{\pi}{4},0)[/mm] am meisten wächst, setzte ich die
> Werte für x und y in die Matrix des Gradienten ein.
>  
> Das Ergebnis x = 0,0137 und y = 0,9999  

Wie kommst Du denn auf so etwas ?????




> zeigt mir,
> dass die Funktion im Pumkt am stärkstens in y Richtung
> wächst.


Unfug !

>  
>
> 3. Ich habe überhaupt kein plan wie ich diese
> Richtungsableitung bestimmen soll.

Wie ist denn eine Richtungsableitung definiert ??


FRED



> Wäre super wenn mir
> jemand helfen könnte.
>  
> Vielen Dank für Euer bemühen.
>  
> Mit freundlichen Grüßen
>
> Jojo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]