matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient Normalvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient Normalvektor
Gradient Normalvektor < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient Normalvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Mi 19.01.2011
Autor: Kuriger

Hallo

Wollte mal fragen ob meine Feststellung stimmt: Bei einer Ebene ist der Gradient und der Normalvektor identisch. Könnt ihr das bestätigen?

Gruss Kuriger

        
Bezug
Gradient Normalvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mi 19.01.2011
Autor: Al-Chwarizmi


> Hallo
>  
> Wollte mal fragen ob meine Feststellung stimmt: Bei einer
> Ebene ist der Gradient und der Normalvektor identisch.
> Könnt ihr das bestätigen?
>  
> Gruss Kuriger


Hallo Kuriger,

das Thema scheint dich nicht loszulassen ...

Du solltest die Frage konkreter stellen. Der Begriff "Normalen-
vektor einer Ebene"  (in [mm] \IR^3) [/mm] ist klar (allerdings jeweils nicht
eindeutig festgelegt). Eine Ebene hat allerdings keinen Gradienten.
Man kann z.B. vom Gradienten eines im [mm] \IR^3 [/mm] definierten skalaren
Feldes sprechen.


LG    Al-Chw.



Bezug
                
Bezug
Gradient Normalvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Mi 19.01.2011
Autor: Kuriger

Hallo Al-Chwarizmi

Ich habe an folgendes gedacht

Die Ebene lautet:

2z + 3y + x = 5

Der Normalvektor dieser Ebene ist [mm] \vec{v_n} [/mm] = [mm] \vektor{1 \\ 3 \\ 2} [/mm]

Der Gradient = [mm] \vektor{f_x \\ f_y \\f_z} [/mm] = [mm] \vektor{1 \\ 3 \\ 2} [/mm]

Irgendwie ist es ja auch logisch. Der Gradient steht ja senrkecht auf der Fläche. In diesem Fall ist die Fläche eine Ebene


Gruss Kuriger

Bezug
                        
Bezug
Gradient Normalvektor: Ebene hat keinen Gradient
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 19.01.2011
Autor: Al-Chwarizmi


> Hallo Al-Chwarizmi
>
> Ich habe an folgendes gedacht
>  
> Die Ebene lautet:
>  
> 2z + 3y + x = 5
>  
> Der Normalvektor dieser Ebene ist [mm]\vec{v_n}[/mm] = [mm]\vektor{1 \\ 3 \\ 2}[/mm]
>  
> Der Gradient = [mm]\vektor{f_x \\ f_y \\f_z}[/mm] = [mm]\vektor{1 \\ 3 \\ 2}[/mm]
>  
> Irgendwie ist es ja auch logisch. Der Gradient steht ja
> senrkecht auf der Fläche. In diesem Fall ist die Fläche
> eine Ebene
>  
>
> Gruss Kuriger


Hallo K.

es ging mir in meiner vorherigen Antwort hauptsächlich um
die korrekten Begriffe !

Der Gradientenvektor, den du oben angibst, ist eben nicht
ein Gradientenvektor der Ebene
, sondern der Funktion f,
die du ja in deiner Schreibweise (aber vielleicht noch nicht
so recht bewusst) anführst. Dabei ist auch noch nicht ganz
klar, welche Funktion genau du mit f meinst. Es kämen z.B.
in Frage:

      $\ [mm] f_1(x)\ [/mm] =\ [mm] x+3\,y+2\,z$ [/mm]

oder aber

      $\ [mm] f_2(x)\ [/mm] =\ [mm] x+3\,y+2\,z-5$ [/mm]

Dieser Unterschied spielt allerdings für den Gradienten keine
Rolle, es ist   $\ grad\ [mm] (f_1)\ [/mm] =\ grad\ [mm] (f_2)$ [/mm]


LG






  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]