matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient, Divergenz, Laplace
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient, Divergenz, Laplace
Gradient, Divergenz, Laplace < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient, Divergenz, Laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Do 19.06.2008
Autor: stimo59

Hallo, ich habe ein paar kurze Fragen zu diesen Begriffen, da ich nicht in der letzten Vorlesung war und mir unsicher bin, ob ich sie vestanden habe.
Fur die Funktion [mm] f(x,y)=x^2+y^2 [/mm] waere der Gradient grad(f(x,y))=(2x,2y).
Und mit dem Laplace-Operator erhalt man die Summe der zweiten patiellen Ableitungen also in dem Fall [mm] \Delta=4. [/mm] Ist das soweit richtig?
Und da [mm] \Delta(f)= [/mm] div grad(f), muesste die Divergenz die Summe der ersten Ableitungen sein, also hier div=2x+2y?

Vielen Dank
Gruss, Timo


        
Bezug
Gradient, Divergenz, Laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Do 19.06.2008
Autor: djmatey

Hallo,

fast richtig, bis auf den letzten Punkt:
Es gilt

div (grad f) = [mm] \bruch{\partial 2x}{\partial x} [/mm] + [mm] \bruch{\partial 2y}{\partial y} [/mm] = 2+2 = 4

LG djmatey

Bezug
                
Bezug
Gradient, Divergenz, Laplace: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Fr 20.06.2008
Autor: stimo59

Ok, also div (grad f) = [mm] \Delta(f) [/mm] = 4.
Aber nur div(f) wäre doch 2x+2y, oder?
Und wie sehen Gradient und Divergenz für eine Funktion [mm] \IR^2 \to \IR^2 [/mm]
aus, also bspw. f(x,y)=(y,x) ?
Vielen Dank

Timo

Bezug
                        
Bezug
Gradient, Divergenz, Laplace: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Fr 20.06.2008
Autor: XPatrickX

Hi,

Den Gradienten gibts dann in dem Sinne nicht, sondern die ersten Ableitungen werden in die sogenannte Jacobi-Matrix geschrieben. Die Divergenz ist dann die Spur dieser Matrix.
Aber evtl. kommt das bei euch erst in der nächsten Vorlesung dran?

Grüße Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]