matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieGradient -> Divergenz / Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Gradient -> Divergenz / Gauß
Gradient -> Divergenz / Gauß < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient -> Divergenz / Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mi 24.02.2016
Autor: DomiBreu

Aufgabe
Show that [mm] \integral_{ B}^{}{grad(r) dV} [/mm] = 0

where r = |r| is the modulus of the position vector r = [mm] x_{i} e_{i} [/mm] and B is the unit ball centered at 0 . Show by explicit calculation. You are not allowed to use symmetry arguments


In der Musterlösung heißt es:


[mm] \integral_{ B}^{}{grad(r) dV} [/mm] = [mm] \integral_{ B}^{}{ div(re_{i}) dV} [/mm]

Wieso darf ich diese erste Umformung machen? Ich finde dazu leider nichts im Netz oder ich suche nach dem Falschen. Ich habe auf Papier beide natürlich ausgeführt und es kommt das selbe raus, jedoch habe ich so für mich keine Erklärung dafür gefunden.


Weiter heißt es:

= [mm] \integral_{ \delta B}^{}{ (re_{i} n_{i}) dS} [/mm] =  [mm] \integral_{ \delta B}^{}{ e_{i} n_{i} dS} [/mm]


Zweites Problem:
Wieso darf ich hier das r "einfach weglassen"?

Dann wird mit dem Divergenztheorem wieder in ein Volumenintegral umgewandelt, das Null ergibt, dass ist soweit klar.

Vielleicht wichtig bezüglich der Notation: es handelt sich um eine Prüfungsaufgabe aus dem Fach Kontinuumsmechanik.

Vielen Dank für eure Hilfe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gradient -> Divergenz / Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Mi 24.02.2016
Autor: leduart

Hallo
zur ersten Frage, wenn man es  ja sehr einfach nachrechnen kann also "sieht" braucht es doch keinen allgemeinen Satz?
zu 2. weil r=1 auf der Eiinheitssphäre.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]