matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient
Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 26.05.2010
Autor: monstre123

Aufgabe
Für [mm] x\not=0 [/mm] sei f(x,y)=arctan(y/x).

i) Bestimmen Sie den Gradienten [mm] \Delta [/mm] f(x,y).

ii) Zeigen Sie: Falls [mm] x\not=0 [/mm] folgt [mm] \parallel\Delta f(x,y)\parallel= 1/\parallel(x,y)\parallel [/mm] und [mm] |xf_{x}(x,y)+yf_{y}(x,y)|\le1. [/mm]

*Anmerkung: Dieses Zeichen [mm] \Delta [/mm] soll umgedreht sein.

Hallo,
so meine Fragen sind bezüglich der Aufgabe folgende:

i) Wie bestimmt man den Gradienten? Was soll ein Gradient überhaupt ausdrücken?

ii) ???


Vielen Dank.

        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 26.05.2010
Autor: fred97

In Deinem Fall ist

       [mm] $\nabla [/mm] f(x,y)= [mm] (f_x(x,y),f_y(x,y))$ [/mm]

FRED

Bezug
                
Bezug
Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Mi 26.05.2010
Autor: monstre123

muss ich das jetzt mit der jakobi matrix bestimmen?

Bezug
                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 26.05.2010
Autor: schachuzipus

Hallo monstre123,

> muss ich das jetzt mit der jakobi matrix bestimmen?

Nein, was hat Fred denn geschrieben?

Hast du das nicht gelesen??

Bestimme die partiellen Ableitungen der Funktion nach x und y und packe sie in einen Vektor.

Gruß

schachuzipus


Bezug
                                
Bezug
Gradient: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:23 So 30.05.2010
Autor: monstre123

hi,

so meine lösungen hierfür:

>> In Deinem Fall ist
>> [mm] \nabla [/mm] f(x,y)= [mm] (f_x(x,y),f_y(x,y)) [/mm]

[mm] f_{x}(x,y)=\bruch{1}{1+x^{2}} [/mm] ,  [mm] f_{y}(x,y)=\bruch{1}{1+y^{2}} [/mm]

[mm] \nabla [/mm] f(x,y)= [mm] (\bruch{1}{1+x^{2}}, \bruch{1}{1+y^{2}}) [/mm]


richtig...?


und zur ii) was soll ich hierfür machen?

Bezug
                                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 30.05.2010
Autor: schachuzipus

Hallo nochmal,

> hi,
>  
> so meine lösungen hierfür:
>  
> >> In Deinem Fall ist
> >> [mm]\nabla[/mm] f(x,y)= [mm](f_x(x,y),f_y(x,y))[/mm]
>  
> [mm]f_{x}(x,y)=\bruch{1}{1+x^{2}}[/mm] ,  
> [mm]f_{y}(x,y)=\bruch{1}{1+y^{2}}[/mm] [notok]

Beides falsch, du musst schon die Kettenregel beachten:

[mm] $\frac{\partial \arctan\left(\frac{y}{x}\right)}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^2}\cdot{}\text{innere Ableitung nach x}$ [/mm]


>  
> [mm]\nabla[/mm] f(x,y)= [mm](\bruch{1}{1+x^{2}}, \bruch{1}{1+y^{2}})[/mm]
>  
>
> richtig...?
>  
>
> und zur ii) was soll ich hierfür machen?

Einfach beides geradeheraus ausrechnen.

Nimm die euklidische Norm [mm] $||\cdot{}||_2$ [/mm] ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]