matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient
Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 01.07.2014
Autor: MichaelKelso

Aufgabe
Berechnen Sie den Gradienten des Skalarfeldes f(r)= [mm] \bruch{exp(-r)}{r} [/mm]

Ich wollte fragen ob mein Ergebnis so richtig ist.

[mm] r=\wurzel{x^2+y^2+z^2} [/mm] (da diese Aufgabe in einem physikalischen Zusammenhang gestellt wurde und [mm] \vec{r} [/mm] dort normalerweise Ortsvektoren sind, bin ich der Meinung, dass der Betrag gemeint ist, obwohl nichts genaueres angegeben ist)

[mm] f(r)=exp(-\wurzel{x^2+y^2+z^2})*(x^2+y^2+z^2)^{-0.5} [/mm]

[mm] \bruch{\partial f(r)}{\partial x} =-0.5*(x^2+y^2+z^2)^{-0.5}*2x*exp(-\wurzel{x^2+y^2+z^2})*(x^2+y^2+z^2)^{-0.5} [/mm] - [mm] 0.5*(x^2+y^2+z^2)^{-1.5}*2x*exp(-\wurzel{x^2+y^2+z^2}) [/mm]

  = [mm] x*exp(-\wurzel{x^2+y^2+z^2})*[-(x^2+y^2+z^2)^{-1}-(x^2+y^2+z^2)^{-1.5}] [/mm]

    = [mm] x*exp(-r)*[-r^{-2}-r^{-3}] [/mm]

  Analog für die Ableitungen nach y und z

und somit   grad(f)= [mm] \bruch{-exp(-r)}{r^2+r^3}*\vektor{x \\ y \\ z} [/mm]

Das müsste so korrekt sein, oder?

Herzlichen Dank!

        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Di 01.07.2014
Autor: leduart

Hallo
Deine Ableitung ist noch richtig, aber [mm] 1/a+1/b\not=1/(a+b) [/mm]
d.h. deine Zusammengassung ist falsch!
Gruss leduart

Bezug
                
Bezug
Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:33 Mi 02.07.2014
Autor: MichaelKelso

Oh ja! Danke!

Dann habe ich für die Ableitung nach x:

[mm] \bruch{\partial}{\partial x} (exp(-\wurzel{+x^2+y^2+z^2})*(+x^2+y^2+z^2)^{-1/2}) [/mm]

= [mm] \bruch{-exp(-\wurzel{+x^2+y^2+z^2})*\wurzel{+x^2+y^2+z^2}*x -exp(\wurzel{+x^2+y^2+z^2})*x }{\wurzel{+x^2+y^2+z^2}^3} [/mm]

[mm] =\bruch{x*exp(-\wurzel{+x^2+y^2+z^2})* (-\wurzel{+x^2+y^2+z^2} - 1)}{\wurzel{+x^2+y^2+z^2}^3} [/mm]

= [mm] x*\bruch{exp(-r)*(-r-1)}{r^3} [/mm]

Und insgesamt dann mit de analogen Ableitungen nach y und z:

grad(f)= [mm] \bruch{-exp(-r)*(r-1)}{r^3} [/mm] * [mm] \vektor{x \\ y \\ z} [/mm]


Herzlichen Dank!

Bezug
                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Mi 02.07.2014
Autor: fred97


> Oh ja! Danke!
>  
> Dann habe ich für die Ableitung nach x:
>  
> [mm]\bruch{\partial}{\partial x} (exp(-\wurzel{+x^2+y^2+z^2})*(+x^2+y^2+z^2)^{-1/2})[/mm]
>  
> =
> [mm]\bruch{-exp(-\wurzel{+x^2+y^2+z^2})*\wurzel{+x^2+y^2+z^2}*x -exp(\wurzel{+x^2+y^2+z^2})*x }{\wurzel{+x^2+y^2+z^2}^3}[/mm]
>  
> [mm]=\bruch{x*exp(-\wurzel{+x^2+y^2+z^2})* (-\wurzel{+x^2+y^2+z^2} - 1)}{\wurzel{+x^2+y^2+z^2}^3}[/mm]
>  
> = [mm]x*\bruch{exp(-r)*(-r-1)}{r^3}[/mm]
>  
> Und insgesamt dann mit de analogen Ableitungen nach y und
> z:
>  
> grad(f)= [mm]\bruch{-exp(-r)*(r-1)}{r^3}[/mm] * [mm]\vektor{x \\ y \\ z}[/mm]
>  

Jetzt stimmts

Edit: ich war zu schlampig: an einem Vorzeichen solltest Du noch basteln

FRED

>
> Herzlichen Dank!


Bezug
                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Mi 02.07.2014
Autor: chrisno

Ich wage eine abweichende Meinung: ein Vorzeichen stimmt noch nicht.

Bezug
                                
Bezug
Gradient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:48 Mi 02.07.2014
Autor: fred97


> Ich wage eine abweichende Meinung: ein Vorzeichen stimmt
> noch nicht.

Hallo chrisno,

Du hast recht !

Gruß FRED


Bezug
                                
Bezug
Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:06 Mi 02.07.2014
Autor: MichaelKelso

Ja! Stimmt!

Es müsste grad(f)= [mm] \bruch{-exp(-r)*(r+1)}{r^3} \vektor{x \\ y \\ z} [/mm] sein, richtig?

Vielen Dank für die ganze Hilfe!! :)

Bezug
                                        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mi 02.07.2014
Autor: chrisno

[ok]

Bezug
                                                
Bezug
Gradient: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mi 02.07.2014
Autor: MichaelKelso

Toll! Herzlichen Dank nochmal! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]