matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesGrade von Geraden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Grade von Geraden
Grade von Geraden < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grade von Geraden: Hilfe,Tipp
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 05.01.2010
Autor: ringostar88

Hallo ihr Lieben,

ich habe eine vielleicht etwas dumme Frage^^ Aber vielleicht stehe ich einfach auf der Leitung im Moment...

Also, ich habe zwei Geraden die beide eine nicht gleiche Steigung von [mm] \pm [/mm] 90 Grad haben.
(Den Steigungsgrad muss ich mir selbst errechnen über den atan(Steigung).)
Das bedeutet die beiden Geraden schwanken in Ihrer Steigung, und das völlig unabhängig voneinander.

Jetzt möchte ich den Steigungsunterschied zwischen den beiden Geraden ausrechnen.
Dazu habe ich mir einfach überlegt die größere Steigung von der kleineren abzuziehen. Ist ja auch klar, aber was ist, wenn die beiden oder eine von den beiden Geraden eine 90 Grad Steigung hat? Geht das dann auch noch so einfach?
Ich habe halt Probleme damit, weil ich mir ja, wie oben schon gesagt, den Steigungsgrad selbst über den atan(Steigung_der_Gerade) errechnen muss...
Oder weiß jemand allgemein einen anderen Weg dafür?

Danke schon mal!

Liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Grade von Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Di 05.01.2010
Autor: angela.h.b.


> Hallo ihr Lieben,
>  
> ich habe eine vielleicht etwas dumme Frage^^ Aber
> vielleicht stehe ich einfach auf der Leitung im Moment...
>  
> Also, ich habe zwei Geraden die beide eine nicht gleiche
> Steigung von [mm]\pm[/mm] 90 Grad haben.
> (Den Steigungsgrad muss ich mir selbst errechnen über den
> atan(Steigung).)
>  Das bedeutet die beiden Geraden schwanken in Ihrer
> Steigung, und das völlig unabhängig voneinander.

Hallo,

[willkommenmr].

Geraden mit schwankender Steigung kann ich mir nicht vorstellen.

Poste doch am besten mal die Aufgabe und das, was Du bisher gerechnet hast.

Ich denke, daß man Dir dann besser helfen kann.

Gruß v. Angela

>  
> Jetzt möchte ich den Steigungsunterschied zwischen den
> beiden Geraden ausrechnen.
> Dazu habe ich mir einfach überlegt die größere Steigung
> von der kleineren abzuziehen. Ist ja auch klar, aber was
> ist, wenn die beiden oder eine von den beiden Geraden eine
> 90 Grad Steigung hat? Geht das dann auch noch so einfach?
> Ich habe halt Probleme damit, weil ich mir ja, wie oben
> schon gesagt, den Steigungsgrad selbst über den
> atan(Steigung_der_Gerade) errechnen muss...
>  Oder weiß jemand allgemein einen anderen Weg dafür?
>  
> Danke schon mal!
>  
> Liebe Grüße
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Grade von Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Di 05.01.2010
Autor: ringostar88

Vielen Dank für die nette Begrüßung ;-)

Tja, dazu gibt es leider keine Aufgabe.
Ich programmiere etwas, wo das drinnen enthalten ist.
Und diese beiden Geraden entstehen durch Zufall, aber immer mit einer Steigung von [mm] \pm [/mm] 90 Grad. Die ich, wie ich schon sagte, über atan(Steigung_der_Gerade) ausrechne.
Und dann brauche ich den Steigungsunterschied der beiden Geraden.

Liebe Grüße


Bezug
        
Bezug
Grade von Geraden: Nachfrage
Status: (Antwort) fertig Status 
Datum: 17:24 Di 05.01.2010
Autor: informix

Hallo ringostar88,

> Hallo ihr Lieben,
>  
> ich habe eine vielleicht etwas dumme Frage^^ Aber
> vielleicht stehe ich einfach auf der Leitung im Moment...
>  
> Also, ich habe zwei Geraden die beide eine nicht gleiche
> Steigung von [mm]\pm[/mm] 90 Grad haben.
> (Den Steigungsgrad muss ich mir selbst errechnen über den
> atan(Steigung).)
>  Das bedeutet die beiden Geraden schwanken in Ihrer
> Steigung, und das völlig unabhängig voneinander.

was heißt: schwanken um [mm] $\pm [/mm] 90$° ? Wie bemisst sich dieser Winkel? .. gegen die Waagerechte oder Senkrechte?
Betrachtest du die Geraden im [mm] R^2 [/mm] oder [mm] R^3 [/mm] ?
In welchem Zusammenhang kommt dies alles vor?

Wenn sich zwei Geraden im [mm] R^2 [/mm] schneiden, kannst du den Schnittwinkel stets berechnen aus der Differenz der Anstiegwinkel der einzelnen Geraden - aber das weißt du offenbar und kommst dennoch nicht weiter. [verwirrt]

>  
> Jetzt möchte ich den Steigungsunterschied zwischen den
> beiden Geraden ausrechnen.
> Dazu habe ich mir einfach überlegt die größere Steigung
> von der kleineren abzuziehen.

nicht die Steigungen, sondern die zugehörigen MBWinkel!

Oder denkst du an diese Formel:     [mm] $\tan \alpha [/mm] := [mm] \left|\frac{m_1 - m_2}{1+m_1m_2}\right| [/mm] $

> Ist ja auch klar, aber was
> ist, wenn die beiden oder eine von den beiden Geraden eine
> 90 Grad Steigung hat? Geht das dann auch noch so einfach?
> Ich habe halt Probleme damit, weil ich mir ja, wie oben
> schon gesagt, den Steigungsgrad selbst über den
> atan(Steigung_der_Gerade) errechnen muss...
>  Oder weiß jemand allgemein einen anderen Weg dafür?
>  
> Danke schon mal!
>  
> Liebe Grüße
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruß informix

Bezug
                
Bezug
Grade von Geraden: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:39 Di 05.01.2010
Autor: ringostar88


>  was heißt: schwanken um [mm]\pm 90[/mm]° ?

Damit meine ich, das es im Idealfall 90 Grad Steigung sind, aber in der Realität schwanken die 90 Grad um sagen wir [mm] \pm [/mm] 1 Grad.


> Wie bemisst sich  dieser Winkel? .. gegen die Waagerechte oder Senkrechte?

Das verstehe ich nicht ganz. Es ist einfach eine "senkrechte" (sie ist ja nicht senkrecht) Gerade im kartesischem Koordinatensystem.

>  Betrachtest du die Geraden im [mm]R^2[/mm] oder [mm]R^3[/mm] ?

Zweidimensional.

>  In welchem Zusammenhang kommt dies alles vor?

Ich möchte die Steigungsdifferenz wissen, weil ich die eine Gerade so drehen möchte, dass sie genau die gleiche Steigung hat wie die andere Gerade.

> Wenn sich zwei Geraden im [mm]R^2[/mm] schneiden, kannst du den
> Schnittwinkel stets berechnen aus der Differenz der
> Anstiegwinkel der einzelnen Geraden - aber das weißt du
> offenbar und kommst dennoch nicht weiter. [verwirrt]

> Oder denkst du an diese Formel:     [mm]\tan \alpha := \left|\frac{m_1 - m_2}{1+m_1m_2}\right|[/mm]

Genau! Weil ich lediglich die Steigungsangaben von den Geraden habe!

Liebe Grüße

Bezug
                        
Bezug
Grade von Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Di 05.01.2010
Autor: chrisno

Ich weiß ja, dass eine Skizze Aufwand ist. Trotzdem hilft sie meistens beim Helfen. Ist eins deiner Probleme, dass bei einem Steigunswinkel von 90° die Steigung m unendlich ist?

Bezug
                                
Bezug
Grade von Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Mi 06.01.2010
Autor: ringostar88

Ja genau, dass ist mein Problem.
Ich habe nun mal eine einfache banale Zeichnung gemacht. Allerdings sind die Geraden bei mir viel viel mehr an 90 Grad dran. Aber ich habe das hier so gemacht, damit man das besser sehen kann.

[Dateianhang nicht öffentlich]

So, und nun möchte ich halt durch die Steigungen der Geraden, die Gradzahl ermitteln, um die ich z.B. g1 drehen muss, um mit g2 die gleiche Steigung zu haben. Das die Geraden also genau parallel zueinander liegen.

Habe das halt so gelöst, dass ich die Steigungen der Geraden einfach durch atan(Steigung_der_Gerade) als Gradzahl errechnet hab, dann habe ich z.B.:
Grad1= atan(Steigung_von_g1)
Grad2=atan(Steigung_von_g2)

und wenn ich nur g1 drehen will, die Dehgradzahl durch: Grad= Grad2-Grad1 berechnet.
Aber das Programm kommt in Probleme, wenn die Steigungen oder eine Steigung von den Geraden zu nah oder "genau" 90 Grad sind.
Wie kann ich das Problem lösen?

VlG

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                        
Bezug
Grade von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mi 06.01.2010
Autor: chrisno

Da gibt es verschiedene Möglichkeiten.
Manche Programmiersprachen bieten atan mit zwei Argumenten an, so dass Du nicht die Division durch Null hast.

Die andere Version ist, dass Du einfach den Winkel zur y-Achse berechnest. Also [mm] $\arctan( \bruch{\Delta x} {\Delta y})$. [/mm] Wenn ich das richig verstehe, dann verlaufen Deine Geraden nie waagerecht, es gibt dann also kein Problem mit der Division durch Null.

Bezug
                                                
Bezug
Grade von Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Mi 06.01.2010
Autor: ringostar88

Meine Geraden können auch exakt 90 Grad Steigung haben. Das ensteht durch Zufall. Dann hätte ich ja wieder eine Division durch Null...
Ach man, ich weiß nicht weiter :-(



Bezug
                                                        
Bezug
Grade von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 06.01.2010
Autor: Al-Chwarizmi


> Meine Geraden können auch exakt 90 Grad Steigung haben.
> Das ensteht durch Zufall. Dann hätte ich ja wieder eine
> Division durch Null...


Nicht, wenn du dem Ratschlag von chrisno folgst
und statt des Winkels zur x-Achse den Winkel zur
y-Achse betrachtest. Ist [mm] \alpha [/mm] der Winkel der Geraden
gegenüber der x-Achse und [mm] \beta [/mm] der gegenüber der
y-Achse (beide im positiven Drehsinn gemessen),
so gilt [mm] \beta=\alpha-90^{\circ} [/mm] und [mm] tan(\beta)=-\frac{1}{tan(\alpha)} [/mm]
Wenn also [mm] \alpha [/mm] nahe bei 90° liegt, berechnest du es
am besten mit

     [mm] $\alpha=\frac{\pi}{2}+\beta=\frac{\pi}{2}-arctan\left(\frac{1}{tan(\alpha)}\right)$ [/mm]

Ist die Steigung als Quotient  [mm] \frac{\Delta y}{\Delta x} [/mm] gegeben, bedeutet dies:

     [mm] $\alpha=\frac{\pi}{2}-arctan\left(\frac{\Delta x}{\Delta y}\right)$ [/mm]

Und schau mal nach, ob du allenfalls eine ATAN2-Funktion
zur Verfügung hast. Das gibt es z.B. in Excel, Java, C,
C++, Matlab, Fortran, Python, Visual Basic.

Dann geht es auch so:

     [mm] $\alpha=ATAN2(\Delta y,\Delta [/mm] x)$

oder in Mathematica:  [mm] ArcTan[\Delta x,\Delta{y}] [/mm]


LG     Al-Chw.


Bezug
        
Bezug
Grade von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Mi 06.01.2010
Autor: pi-roland

Hallo,

hast du schon einmal mit Vektoren gerechnet? Aus diesem Teilgebiet stammt nämlich mein Vorschlag. Anstatt den Anstieg beider Geraden zu berechnen, fasst du sie als Vektoren auf und berechnest deren Schnittwinkel.
[mm] \cos \alpha =\frac{\vec{a}*\vec{b}}{|\vec{a}|*|\vec{b}|} [/mm]
Nun musst du aus deinen Geraden nur noch Vektoren machen und kannst den Winkel berechnen.
Viel Erfolg,


Roland.

Bezug
                
Bezug
Grade von Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mi 06.01.2010
Autor: ringostar88

Jo, genau das habe ich auch versucht.
Aber da bin ich auch stecken geblieben, weil ich ja den Drehwinkel haben möchte und da kommt immer was positives raus... Weil meine beiden Richtungsvektoren immer in die gleiche Richtung zeigen und die Norm ja auch immer positiv ist.
Oder hast du ne Idee wie ich das richtig stellen kann?

LG


Bezug
                        
Bezug
Grade von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 06.01.2010
Autor: Al-Chwarizmi


> Jo, genau das habe ich auch versucht.
>  Aber da bin ich auch stecken geblieben, weil ich ja den
> Drehwinkel haben möchte und da kommt immer was positives
> raus...

Das liegt daran, dass du mit der Formel [mm] cos(\varphi)=\frac{\vec{a}*\vec{b}}{|\vec{a}|*|\vec{b}|} [/mm]
rechnest und dann [mm] \varphi=arccos\left(\frac{\vec{a}*\vec{b}}{|\vec{a}|*|\vec{b}|}\right) [/mm]  setzt.
Die arccos-Funktion liefert aber in deinem Fall stets
einen positiven Winkel, einerlei ob [mm] \varphi [/mm] in Wirklichkeit
positiv oder negativ war.
Das Problem könntest du lösen, falls du statt des
skalaren das vektorielle Produkt benützt. Die ent-
sprechende Formel ist

      $\ [mm] |\vec{a}\times\vec{b}|=|\vec{a}|*|\vec{b}|*sin(\varphi)$ [/mm]

Da deine Vektoren in der x-y-Ebene liegen, zeigt das
Vektorprodukt in die (positive oder negative) z-Richtung.
Und dieses Vorzeichen der z-Komponente ist hier das
Entscheidende. Wenn du also das Vektorprodukt

      $\ [mm] \vec{a}\times\vec{b}=\pmat{a_x\\a_y\\0}\times\pmat{b_x\\b_y\\0}=\pmat{0\\0\\a_x*b_y-a_y*b_x}=\pmat{0\\0\\z}$ [/mm]

berechnet hast, so erhältst du den Winkel [mm] \varphi [/mm] inklusive
richtigen Vorzeichens so:

      $\ [mm] \varphi=arcsin\left(\frac{a_x*b_y-a_y*b_x}{|\vec{a}|*|\vec{b}|}\right)$ [/mm]


LG    Al-Chwarizmi

Bezug
                                
Bezug
Grade von Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Mi 06.01.2010
Autor: ringostar88

Jo!!! Perfekt. Es klappt. VIELEN DANK!!!!

VLG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]