Grad, Zerfällungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:10 Di 16.02.2016 | Autor: | sissile |
Aufgabe | Bestimme Sie den Zerfällungskörper L des Polynoms f [mm] \in \mathbb{Q} [/mm] [X] und [L: [mm] \mathbb{Q}]
[/mm]
a) [mm] f(X)=X^3-1
[/mm]
b) [mm] f(X)=X^4 [/mm] - [mm] 2*X^2+9 [/mm] |
Hallo
a)
Eine Nullstelle ist [mm] a_1=1.
[/mm]
Führe Polynomdivision durch [mm] (X^3-1):(X-1)=X^2 [/mm] +X+1
und die Nullstellen von [mm] X^2+X+1 [/mm] sind [mm] \frac{-1\pm i \sqrt{3}}{2}
[/mm]
f(x)= (X-1)(X- [mm] \frac{-1+i \sqrt{3}}{2}) [/mm] (X- [mm] \frac{-1-i \sqrt{3}}{2}) [/mm]
Der Zerfällungskörper L= [mm] \mathbb{Q} (\frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2} [/mm] ) da 1 [mm] \in \mathbb{Q} [/mm] ist.
[L: [mm] \mathbb{Q}]=?
[/mm]
Ich hätte es mit dem Gradsatz ausprobiert.
[L: [mm] \mathbb{Q}] [/mm] = [mm] [\mathbb{Q}(\frac{-1+i \sqrt{3}}{2})(\frac{-1-i \sqrt{3}}{2}): \mathbb{Q}(\frac{-1-i \sqrt{3}}{2})]*[\mathbb{Q}(\frac{-1-i \sqrt{3}}{2}): \mathbb{Q}]
[/mm]
Ich bin aber total unsicher wie ich davon jeweils die Minimalpolynome [mm] m_{\frac{-1-i \sqrt{3}}{2}, \mathbb{Q}} [/mm] (X), [mm] m_{\frac{-1+i \sqrt{3}}{2}, \mathbb{Q}(\frac{-1-i \sqrt{3}}{2}) } [/mm] (X)finden soll.
Geht das irgendwie einfacher?
Bei b) hab ich das selbe Problem.
f(X)=(X- [mm] \sqrt{\frac{2+ i \sqrt{32}}{2}})(X+\sqrt{\frac{2+ i \sqrt{32}}{2}})(X- \sqrt{\frac{2- i \sqrt{32}}{2}})(X+ \sqrt{\frac{2- i \sqrt{32}}{2}})=(X- \sqrt{1 + i \sqrt{8}})(X+ \sqrt{1 + i \sqrt{8}})(X- \sqrt{1 - i \sqrt{8}})(X+ \sqrt{1 - i \sqrt{8}})
[/mm]
L= [mm] \mathbb{Q}( \sqrt{1 + i \sqrt{8}}, \sqrt{1 - i \sqrt{8}})
[/mm]
|
|
|
|
Hallo,
a) Das Produkt der beiden Nullstellen liegt in [mm] $\IQ$, [/mm] also genügt es, eine von beiden zu adjungieren. Wenn du einen Grund nennst, weshalb [mm] X^2+X+1 [/mm] irreduzibel und damit ihr Minimalpolynom ist, weißt du, dass die Körpererweiterung Grad $2$ hat.
b) Im Prinzip genauso. Multipliziere mal $2$ der (sich nicht nur um Vorzeichen unterscheidenden) zusammen und schau, ob du im Unterkörper landest, der von einer der beiden Nullstellen erzeugt wird. Wenn das der Fall ist, genügt es, eine der Nullstellen zu adjungieren und der Grad ist 4 (sofern das Polynom irreduzibel ist, was man prüfen sollte). Wenn das nicht der Fall ist, hat das Produkt der beiden den Grad $2$ über [mm] $\IQ(x_1)$ [/mm] und man kommt insgesamt auf Grad 8.
(Vielleicht rechne ich das selbst nochmal ganz durch, denn ich schreibe auch demnächst Klausur über dasselbe Thema.)
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:47 Di 16.02.2016 | Autor: | sissile |
Hallo,
Ah, so ist das natürlich relativ einfach.
Zu c)
[mm] (\frac{-1+i \sqrt{3}}{2})(\frac{-1-i \sqrt{3}}{2})= \frac{1+3}{4}=1 \in \mathbb{Q} \subseteq \mathbb{Q} [/mm] ( [mm] \frac{-1 + i \sqrt{3}}{2})
[/mm]
Es folgt [mm] \frac{-1+i \sqrt{3}}{2}=(\frac{-1-i \sqrt{3}}{2})^{-1} \in \mathbb{Q} [/mm] ( [mm] \frac{-1 + i \sqrt{3}}{2})
[/mm]
[mm] \Rightarrow [/mm] L = [mm] \mathbb{Q} [/mm] ( [mm] \frac{-1 + i \sqrt{3}}{2})
[/mm]
[mm] p(X)=X^2+X+1 [/mm] hat [mm] \frac{-1 + i \sqrt{3}}{2} [/mm] als Nullstelle und [mm] p(X+1)=X^2+3X+3 [/mm] ist irreduzibel in [mm] \mathbb{Q} [/mm] nach Eistenstein mit 3|3,3|3,3 teilt 1 nicht, 9 teilt 3 nicht und damit ist p(X) irreduzibel in [mm] \mathbb{Q}
[/mm]
[mm] \Rightarrow p(X)=m_{\frac{-1 + i \sqrt{3}}{2}, \mathbb{Q}}
[/mm]
[mm] \Rightarrow [/mm] [L: [mm] \mathbb{Q}]=2
[/mm]
Zu d)
[mm] (\sqrt{1+i \sqrt{8}})*(\sqrt{1-i \sqrt{8}})= \sqrt{(1+ i \sqrt{8})(1- i \sqrt{8})}=\sqrt{9}=3 \in \mathbb{Q}
[/mm]
Demnach ist [mm] (\sqrt{1- i \sqrt{8}})= [/mm] 3 * [mm] (\sqrt{1+ i \sqrt{8}})^{-1} \in \mathbb{Q} (\sqrt{1+ i \sqrt{8}}).
[/mm]
Daraus folgt L= [mm] \mathbb{Q} [/mm] ( [mm] \sqrt{1+ i \sqrt{8}}) [/mm] der Zerfällungskörper.
[mm] \sqrt{1+ i \sqrt{8}} [/mm] isteine Nullstelle von [mm] f(X)=X^4-2X^2 [/mm] + 9
[mm] f(X+1)=(X+1)^4 [/mm] - [mm] 2(X+1)^2+9=X^4++4X^3+4X^2+8 [/mm] nach Einsenstein ist f(X+1) mit 4|8,4|4,4|0, 4 teilt nicht 1,16 teilt nicht 8 irreduzibel in [mm] \mathbb{Q}, [/mm] woraus folgt f(X) ist irreduzibel über [mm] \mathbb{Q}
[/mm]
[mm] \Rightarrow [L:\mathbb{Q}]4
[/mm]
Viel Erfolg bei deiner Klausur
Danke**
|
|
|
|
|
Das erste passt. Bei Polynomen vom Grad 2 oder 3 reicht es auch immer, auf Nullstellen zu prüfen für die Irreduzibilität. Aber Eisenstein ist natürlichs schöner. Beachte aber, dass du für die Korrektheit des Eisenstein-Kriteriums ein Primelement brauchst, was du beim 2. Polynom falsch gemacht hast. Wenn man nichts besseres sieht und die Nullstellen kennt, kann man auch einfach durch zusammenmultiplizieren der Linearfaktoren gucken, ob irgendein Teiler im Grundring liegt. Nachdem man die Linearfaktoren ausgeschlossen hat, kann man sich hier auf drei verschiedene quadratische Faktoren beschränken.
Dir auch viel Erfolg (und Glück, falls du so etwas brauchst)! Ich habe auch noch 3 Wochen Zeit, aber ich bedanke mich trotzdem schon einmal
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 12:01 Mi 17.02.2016 | Autor: | sissile |
Hallo,
Tut mir leid ich war wohl schon zu unkonzentriert!
Ich hab mich bei b) verrechnet!
b) $ [mm] f(X)=X^4 [/mm] $ - $ [mm] 2\cdot{}X^2+9 [/mm] $
[mm] x_{1,2,3,4} =\pm \sqrt{\frac{2 \pm i \sqrt{32}}{2}} =\pm \sqrt{1 \pm i 2* \sqrt{2}} [/mm]
[mm] L=\mathbb{Q} (\sqrt{1 +i 2* \sqrt{2}},\sqrt{1 -i 2* \sqrt{2}})
[/mm]
Da [mm] \sqrt{1 +i 2* \sqrt{2}}=\sqrt{(i + \sqrt{2})^2}=i [/mm] + [mm] \sqrt{2} [/mm] und [mm] \sqrt{1 -i 2* \sqrt{2}}=\sqrt{(i - \sqrt{2})^2}=i [/mm] - [mm] \sqrt{2} [/mm] hat der Zerfällungskörper die Gestalt: [mm] L=\mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2})
[/mm]
Versuch:
(i- [mm] \sqrt{2})(i+\sqrt{2})=-1-2=-3 \in \mathbb{Q}
[/mm]
(i - [mm] \sqrt{2})= [/mm] (-3) * [mm] (i+\sqrt{2})^{-1} \in \mathbb{Q} [/mm] (i + [mm] \sqrt{2})
[/mm]
Daraus folgt [mm] L=\mathbb{Q} [/mm] (i [mm] +\sqrt{2})
[/mm]
Ich habe es nicht geschafft zuzeigen, dass [mm] f(X)=X^4 [/mm] - [mm] 2X^2 [/mm] +9 irreduzibel ist bin deshalb einen Umweg gegangen:
Umweg:
Behauptung : [mm] \mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2})= \mathbb{Q}(i, \sqrt{2})
[/mm]
1. [mm] \subseteq [/mm] ist klar
2: [mm] \supseteq [/mm] :
(i - [mm] \sqrt{2}) [/mm] - (i [mm] +\sqrt{2})= [/mm] -2 [mm] \sqrt{2} \in \mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2}) \Rightarrow \sqrt{2}=\frac{1}{-2} [/mm] * (-2 [mm] \sqrt{2}) \in \mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2})
[/mm]
(i - [mm] \sqrt{2}) [/mm] +(i [mm] +\sqrt{2})= [/mm] 2*i [mm] \in \mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2}) \Rightarrow i=\frac{1}{2} [/mm] * (2 i) [mm] \in \mathbb{Q} [/mm] (i - [mm] \sqrt{2},i +\sqrt{2})
[/mm]
[mm] [\mathbb{Q}(i, \sqrt{2}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{2}): \mathbb{Q} (\sqrt{2})]* [\mathbb{Q}(\sqrt{2}) [/mm] : [mm] \mathbb{Q}]=2*2=4
[/mm]
Da [mm] m_{\sqrt{2}, \mathbb{Q}}= X^2 [/mm] -2 und [mm] m_{i, \mathbb{Q}(\sqrt{2})}= X^2 [/mm] +1.
p(X)= [mm] X^2 [/mm] +1 ist irreduzibel über [mm] \mathbb{Q}(\sqrt{2}) [/mm] da wenn es reduzibel wäre eine Nullstelle in [mm] \mathbb{Q}(\sqrt{2})=\{a+ b \sqrt{2}|a,b \in \mathbb{Q}\} [/mm] hätte.
Jedoch [mm] (a+b\sqrt{2})^2+1 \overbrace{=}^{!}0 \iff (a^2 +1+2b^2=0 [/mm] ) [mm] \wedge [/mm] (2*a*b [mm] \sqrt{2}=0) [/mm] würde zu einen Widerspruch führen.
Daraus folgt dann [L: [mm] \mathbb{Q}]=4.
[/mm]
Da Minimalpolynom [mm] m_{i + \sqrt{2}, \mathbb{Q}} [/mm] = f(X):
Da f(i + [mm] \sqrt{2})=0 [/mm] folgt [mm] m_{i + \sqrt{2}, \mathbb{Q}} [/mm] teilt f(X). Da das Mimimalpolynom und f gleichen Grad [mm] ([\mathbb{Q} [/mm] (i [mm] +\sqrt{2}): \mathbb{Q}]=4)sowie [/mm] normiert sind folgt [mm] m_{i + \sqrt{2}, \mathbb{Q}} [/mm] = f(X).
Hast du eine schnellere Lösung gefunden?
Liebe Grüße,
Sissi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Fr 19.02.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|