matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGrad Körpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Grad Körpererweiterung
Grad Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 So 15.12.2013
Autor: Belleci

Aufgabe
Sei z [mm] \in \mathbb{C} \setminus \mathbb{R} [/mm] algebraisch vom Grad n über [mm] \mathbb{Q}. [/mm] Zeige:
a) [mm] [\mathbb{Q}[z, \overline{z}]:[\mathbb{Q}[z+ \overline{z}]] \ge [/mm] 2.
b) Re(z) ist albegraisch vom Grad [mm] \le [/mm] n(n-1)/2 über [mm] \mathbb{Q}. [/mm]

Hallo,

ich weiß bei der Aufgabe gerade insgesamt nicht so wirklich, wie ich die lösen kann, ich komme auf keinen Ansatz.
Kann mir da bitte wer helfen?

Danke

        
Bezug
Grad Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 15.12.2013
Autor: felixf

Moin!

> Sei z [mm]\in \mathbb{C} \setminus \mathbb{R}[/mm] algebraisch vom
> Grad n über [mm]\mathbb{Q}.[/mm] Zeige:
>  a) [mm][\mathbb{Q}[z, \overline{z}]:[\mathbb{Q}[z+ \overline{z}]] \ge[/mm]
> 2.

Der Grad einer Koerpererweiterung ist eine ganze Zahl [mm] $\ge [/mm] 1$. Wenn du also zeigen sollst, dass der Grad [mm] $\ge [/mm] 2$ ist, musst du nur zeigen dass er nicht 1 sein kann. Was bedeutet es, wenn er 1 ist?

>  b) Re(z) ist albegraisch vom Grad [mm]\le[/mm] n(n-1)/2 über
> [mm]\mathbb{Q}.[/mm]

Kannst du $Re(z)$ durch $z$ und [mm] $\overline{z}$ [/mm] ausdruecken?

Wenn ja, schau dir mehrere passende Koerpererweiterungen an und schaetze jeweils die Grade zwischen ihnen ab, um schliesslich eine Abschaetzung der Art [mm] $[\IQ(Re(z)) [/mm] : [mm] \IQ] \le [/mm] ...$ zu bekommen.

LG Felix


Bezug
                
Bezug
Grad Körpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mo 16.12.2013
Autor: Belleci

Hallo Felix,

danke für deine Antwort.


> Der Grad einer Koerpererweiterung ist eine ganze Zahl [mm]\ge 1[/mm].
> Wenn du also zeigen sollst, dass der Grad [mm]\ge 2[/mm] ist, musst
> du nur zeigen dass er nicht 1 sein kann.

Ja klar, an sowas offensichtliches denke ich natürlich nicht. *Kopf auf den Tisch knall*

> Was bedeutet es,
> wenn er 1 ist?

Der Grad kann nur 1 sein bei der Identität.

>  
> >  b) Re(z) ist albegraisch vom Grad [mm]\le[/mm] n(n-1)/2 über

> > [mm]\mathbb{Q}.[/mm]
>  
> Kannst du [mm]Re(z)[/mm] durch [mm]z[/mm] und [mm]\overline{z}[/mm] ausdruecken?
>  
> Wenn ja, schau dir mehrere passende Koerpererweiterungen an
> und schaetze jeweils die Grade zwischen ihnen ab, um
> schliesslich eine Abschaetzung der Art [mm][\IQ(Re(z)) : \IQ] \le ...[/mm]
> zu bekommen.
>  


Habe jetzt beide Teile gelöst,
vielen Dank nochmal. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]