matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenGoniometrische Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - Goniometrische Gleichungen
Goniometrische Gleichungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichungen: Bestimmung
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 17.10.2011
Autor: savy_7

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wir haben eine goniometrische Gleichung mit folgenden Lösungen:
tan x=1
tan x=+Wurzel von 3
tan x= - Wurzel von 3

Wie lautet die Lösungsmenge?

Hierfür gibt es doch Formeln wie man von einem in den nächsten Quadranten kommt, wäre nett wenn jemand eine Strategie erläuternt kann wie man am Besten vorgeht. Eine Verallgemeinerung wäre nicht schlecht(Cosinus und Sinus).

Danke

        
Bezug
Goniometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 17.10.2011
Autor: reverend

Hallo savy,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wir haben eine goniometrische Gleichung mit folgenden
> Lösungen:
>   tan x=1
>   tan x=+Wurzel von 3
>   tan x= - Wurzel von 3
>  
> Wie lautet die Lösungsmenge?
>  
> Hierfür gibt es doch Formeln wie man von einem in den
> nächsten Quadranten kommt, wäre nett wenn jemand eine
> Strategie erläuternt kann wie man am Besten vorgeht. Eine
> Verallgemeinerung wäre nicht schlecht(Cosinus und Sinus).

Na, dann setz doch mal Sinus und Cosinus ein.

[mm] \sin{x}=\cos{x} [/mm]
[mm] \sin{x}=\wurzel{3}\cos{x} [/mm]
[mm] \sin{x}=-\wurzel{3}\cos{x} [/mm]

Jetzt könntest Du zwar noch den trigonometrischen Pythagoras verwenden, um eine der beiden Funktionen zu ersetzen, aber diese Tangenswerte sollte man kennen oder rekonstruieren können.

Geh doch mal die "ausgezeichneten" Werte von Sinus und Cosinus ab, also für 0°, 30°, 45°, 60°, 90°.

Ansonsten gilt [mm] \sin{(-x)}=-\sin{(x)} [/mm] und [mm] \cos{(-x)}=\cos{(x)}. [/mm] Damit kommst du doch durch die Quadranten.
Leichter zu merken ist es, wenn man den Einheitskreis durchläuft und sich überlegt, wo Sinus und Cosinus dann jeweils negativ oder positiv sind.

Grüße
reverend


Bezug
                
Bezug
Goniometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Mo 17.10.2011
Autor: savy_7

Ich suche Formel zur Bestimmung der Lösung.

Für tan x =1 und tan x=Wurzel von 3 die Lösungen befinden sich im 1. und 3.Quandranten,deshalb:

x1= 1/4 pi     x3=1/4 pi + pi =5/4 pi    

x1= 1/3 pi     x3=1/3pi+pi                    

Für Tan x von -Wurzel von 3

im 2. und 4. Quandranten:

x2=pi-X1=p-1/3pi=2/3pi

x4=2pi-XI=2pi-1/3pi=5/3pi

X1=1.Quadrant
X2=2.Quandrant
X3=3.Quandrant
X4=4.Quandrant

Ich meine solche Formeln wie die letzetn beiden, lassen wir es beim Tangens sein. Diese ändern sich halt nicht oder doch?


Bezug
                        
Bezug
Goniometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mo 17.10.2011
Autor: Steffi21

Hallo

(1)
tan(x)=1

[mm] x=\bruch{\pi}{4} [/mm]

(2)
[mm] tan(x)=\wurzel{3} [/mm]

[mm] x=\bruch{\pi}{3} [/mm]

(3)
[mm] tan(x)=-\wurzel{3} [/mm]

[mm] x=-\bruch{\pi}{3} [/mm]

jetzt sollte dir die kleinste Peride der Tangesfunktion [mm] \pi [/mm] bekannt sein, deine Gleichungen haben unendlich viele Lösungen

Steffi


Bezug
                        
Bezug
Goniometrische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mo 17.10.2011
Autor: savy_7

Ich suche  solche Formeln wie die letzten beiden,hat jemand vielleicht solche?

DANKE

Bezug
                                
Bezug
Goniometrische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 17.10.2011
Autor: reverend

Hallo nochmal,

stimmt etwas nicht mit dem Tipp von Steffi? Du hast beim Tangens keine Lösung in jedem Quadranten.

Wenn Du eine Lösung x hast, dann ist [mm] x+k\pi [/mm] auch eine Lösung, mit [mm] k\in\IZ. [/mm]

Hier hat Deine Lösungsmenge allerdings drei verschiedene x, also [mm] x_1+k\pi, x_2+k\pi, x_3+k\pi. [/mm]

Wenn Du diese Aussage unbedingt in der Form brauchst, die Du forderst, dann ist also [mm] \tan{(x)}=\tan{(x+\pi)}=\tan{(x-\pi)}. [/mm] Die Darstellung oben ist aber nicht nur besser, sondern die einzig richtige.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]