matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenGoniometrische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - Goniometrische Gleichung
Goniometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 22.10.2009
Autor: Kackfisch

Aufgabe
Bestimmen sie alle Lösungen der Gleichung

[mm]\sin(2x)=2*\cos(\phi)*cos(x)[/mm]

wobei [mm]0 \le x \le \bruch{\pi}{2}[/mm]
und [mm]0 \le \phi \le \bruch{\pi}{2}[/mm]

Hallo!

Ich habe versucht durch Umformen mehr Klarheit in die Sache zu bringen. Durch Ergänzen von [mm]+\sin(\phi)*\sin(x)-\sin(\phi)*\sin(x)[/mm] und Anwenden der mir bekannten Additionstheoreme für den Kosinus unter Berücksichtigung der Parität kam ich auf:

[mm]\sin(2x)=\cos(\phi+x)\cos(\phi-x)[/mm]

Irgendwie DENKE ich mir jetzt, dass die einzige Lösung [mm]\bruch{\pi}{2}[/mm] sein kann.
Aber ich habe, da ich es auch noch nie mit solchen Funktionen zu tun hatte, keine Ahnung, wie ich das mathematisch ausdrücken kann oder ob es überhaupt richtig ist.

Ich danke schon mal für eure Antworten
Kackfisch


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Do 22.10.2009
Autor: fencheltee


> Bestimmen sie alle Lösungen der Gleichung
>  
> [mm]\sin(2x)=2*\cos(\phi)*cos(x)[/mm]

sin(2x)=2*sin(x)*cos(x)
dann würde man das ja für den ausdruck einsetzen und auf beiden seiten durch cos(x) teilen wollen (was man ja nur darf, wenn [mm] x\not= [/mm] 0. wenn man dann schaut, für welche x es aber 0 wird, nämlich [mm] \pi/2+k\pi [/mm] und diese in die ausgangsgleichung einsetzt, siehst du, dass [mm] \pi/2 [/mm] die gleichung löst)

>  
> wobei [mm]0 \le x \le \bruch{\pi}{2}[/mm]
>  und [mm]0 \le \phi \le \bruch{\pi}{2}[/mm]
>  
> Hallo!
>  
> Ich habe versucht durch Umformen mehr Klarheit in die Sache
> zu bringen. Durch Ergänzen von
> [mm]+\sin(\phi)*\sin(x)-\sin(\phi)*\sin(x)[/mm] und Anwenden der mir
> bekannten Additionstheoreme für den Kosinus unter
> Berücksichtigung der Parität kam ich auf:
>  
> [mm]\sin(2x)=\cos(\phi+x)\cos(\phi-x)[/mm]
>  
> Irgendwie DENKE ich mir jetzt, dass die einzige Lösung
> [mm]\bruch{\pi}{2}[/mm] sein kann.
>  Aber ich habe, da ich es auch noch nie mit solchen
> Funktionen zu tun hatte, keine Ahnung, wie ich das
> mathematisch ausdrücken kann oder ob es überhaupt richtig
> ist.
>  
> Ich danke schon mal für eure Antworten
>  Kackfisch
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

mfg tee

Bezug
                
Bezug
Goniometrische Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:07 Do 22.10.2009
Autor: Kackfisch

>was man ja nur darf, wenn $ [mm] x\not= [/mm] $ 0

Meinst du hier [mm] \cos(x)\not=0 [/mm] ?

Bezug
                        
Bezug
Goniometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 22.10.2009
Autor: fencheltee


> >was man ja nur darf, wenn [mm]x\not=[/mm] 0
>  
> Meinst du hier [mm]\cos(x)\not=0[/mm] ?

oh ja natürlich :-)
flüchtigkeitsfehler :/

zur aufgabe noch:
der restliche term lässt sich noch allgemein nach x auflösen! somit hast du dann quasi 3 lösungen(+vielfache von [mm] k2\pi) [/mm] am ende

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]