matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGlockenkurve von Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Glockenkurve von Gauß
Glockenkurve von Gauß < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Glockenkurve von Gauß: Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:53 So 23.05.2010
Autor: monstre123

Aufgabe
Gegeben sei die Funktion f : [mm] \IR\to\IR [/mm] , f(x) = [mm] \bruch{1}{\wurzel{2*\pi}}e^{\bruch{1}{2}x^{2}} [/mm] (Der Graph dieser Funktion ist die
bekannte Gaußsche Glockenkurve.)

a) Berechnen Sie das Taylorpolynom [mm] T_{5}f(x) [/mm] sowie die Taylorreihe für die Entwicklungsstelle [mm] x_{0}=0 [/mm] an.

b) Bestimmen Sie die Taylorreihe der Funktion F(x) =  [mm] \integral_{0}^{x}{f(t) dt}. [/mm]
Hinweis: Dieses Integral besitzt keinen geschlossenen Ausdruck als Lösung.

c) Berechnen Sie mit Hilfe des Taylorpolynoms aus a) näherungsweise F(1).
Hinweis: Der exakte Wert ist 0, 842701.

Guten Abend,

meine Frage: wie soll ich mit der Aufgabe anfangen?
Wenn ich eine Taylorreihe berechne, muss ich jetzt diese Funktion 5mal ableiten?

Danke.

        
Bezug
Glockenkurve von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 So 23.05.2010
Autor: Steffi21

Hallo, so ist es, Steffi

Bezug
                
Bezug
Glockenkurve von Gauß: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:17 So 23.05.2010
Autor: monstre123

so, hier die erste ableitung:

[mm] f(x)=\bruch{1}{\wurzel{2\cdot{}\pi}}e^{\bruch{1}{2}x^{2}} [/mm]

[mm] f'(x)=\bruch{-x}{\wurzel{2\cdot{}\pi}}e^{\bruch{1}{2}x^{2}} [/mm]

richtig?

Bezug
                        
Bezug
Glockenkurve von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 23.05.2010
Autor: MathePower

Hallo monstre123,

> so, hier die erste ableitung:
>  
> [mm]f(x)=\bruch{1}{\wurzel{2\cdot{}\pi}}e^{\bruch{1}{2}x^{2}}[/mm]
>  
> [mm]f'(x)=\bruch{-x}{\wurzel{2\cdot{}\pi}}e^{\bruch{1}{2}x^{2}}[/mm]
>  
> richtig?


Die Funktion, die Du differenzieren sollst, lautet

[mm]f(x)=\bruch{1}{\wurzel{2\cdot{}\pi}}e^{\red{-}\bruch{1}{2}x^{2}}[/mm]

Dann stimmt auch die Ableitung

[mm]f'(x)=-\bruch{x}{\wurzel{2\cdot{}\pi}}e^{-\bruch{1}{2}x^{2}}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Glockenkurve von Gauß: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 24.05.2010
Autor: monstre123


> Die Funktion, die Du differenzieren sollst, lautet
>  
> [mm]f(x)=\bruch{1}{\wurzel{2\cdot{}\pi}}e^{\red{-}\bruch{1}{2}x^{2}}[/mm]
>  
> Dann stimmt auch die Ableitung
>
> [mm]f'(x)=-\bruch{x}{\wurzel{2\cdot{}\pi}}e^{-\bruch{1}{2}x^{2}}[/mm]
>  
>
> Gruss
>  MathePower


sry, hatte das minus zeichen vergessen :P



so, hier die 2.Ableitung:

[mm] f''(x)=-1*\bruch{1}{\wurzel{2*\pi}}e^{-\bruch{1}{2}x^{2}}+(-x)*\bruch{-x}{\wurzel{2*\pi}}e^{-\bruch{1}{2}x^{2}} [/mm]

     = [mm] \bruch{-1}{\wurzel{2*\pi}}e^{-\bruch{1}{2}x^{2}}-\bruch{2x}{\wurzel{2*\pi}}e^{-\bruch{1}{2}x^{2}}=\bruch{1}{\wurzel{2*\pi}}e^{-\bruch{1}{2}x^{2}}(-1-2x) [/mm]

korrekt?

Bezug
                                        
Bezug
Glockenkurve von Gauß: nicht richtig
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 24.05.2010
Autor: Loddar

Hallo monstre!


Prinzipiell ganz gut. Allerdings machst Du beim Zusammenfassen einen Fehler.

Es gilt:
$$(-x)*(-x) \ = \ [mm] +x^{\red{2}} [/mm] \ [mm] \not= [/mm] \ +2*x$$

Gruß
Loddar


Bezug
                                                
Bezug
Glockenkurve von Gauß: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:01 Mo 24.05.2010
Autor: monstre123

so hier die 3.Ableitung nachgeschoben:

[mm] f''(x)=\bruch{1}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}(x^{2}-1) [/mm]

[mm] f'''(x)=-\bruch{x}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}*(x^{2}-1)+\bruch{1}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}*(2x) [/mm]

[mm] =-\bruch{x^{3}}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}+\bruch{x}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}+\bruch{2x}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}} [/mm]

[mm] =\bruch{1}{\wurzel{2*\pi}}*e^{-\bruch{1}{2}x^{2}}(-x^{3}+x+2x) [/mm]

richtig?

Bezug
                                                        
Bezug
Glockenkurve von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 24.05.2010
Autor: leduart

Hallo
richtig.
und wenn du schon so unsicher bist, bitte die 2 nächsten Ableitungen auf einmal.
Gruss leduart

Bezug
                                                                
Bezug
Glockenkurve von Gauß: Generelle Frage
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 24.05.2010
Autor: monstre123

eine generelle Frage:

ist [mm] \bruch{1}{\wurzel{2*\pi}}*x^{0}= [/mm]

1) [mm] \bruch{1}{\wurzel{2*\pi}} [/mm]   oder

2) [mm] \bruch{x}{\wurzel{2*\pi}} [/mm]

ich glaube eher das erstere, oder?

Bezug
                                                                        
Bezug
Glockenkurve von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mo 24.05.2010
Autor: Steffi21

Hallo

[mm] x^{0}=1 [/mm] für [mm] x\not=0 [/mm]

Steffi


Bezug
        
Bezug
Glockenkurve von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Mo 24.05.2010
Autor: monstre123

guten abend,

zu b) hätte ich eine Frage und zwar: was ich hier machen muss wenn ich aus a) die Taylorreihe habe?

Bezug
                
Bezug
Glockenkurve von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 24.05.2010
Autor: leduart

Hallo
Die Taylprreihe integrieren!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]