matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikGleitkommazahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Gleitkommazahlen
Gleitkommazahlen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitkommazahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 24.05.2007
Autor: sgriesser

Aufgabe
Schätzen Sie den relativen Rundungsfehler für folgende Berechnungen mit Gleitkommazahlen x und y ab, wobei x,y [mm] \in M_{\beta}(t, [/mm] [L,U]):

a)   [mm] R_{1}:= [/mm] rd(x²-y²),
b)   [mm] R_{2}:= [/mm] rd((x-y)(x+y))  

Hallo an Alle und danke für eure Hilfe :-)

Also, mein Versuch bei dieser Aufgabe
Bei A)
Es gibt hier 3 Rundungen x², y² und bei der Subtraktion

rd(x²) = [mm] x²(1+\epsilon_{1}), \epsilon_{1} \le \bruch{1}{2}\beta^{1-t} [/mm] oder ist  [mm] \epsilon_{1} \le 5\beta^{-t} [/mm]
rd(y²) =  [mm] y²(1+\epsilon_{2}), \epsilon_{2} \le \bruch{1}{2}\beta^{1-t} [/mm]
rd( x² - y²) = [mm] (x²(1+\epsilon_{1}) [/mm] - y²(1 + [mm] \epsilon_{2})(1+\epsilon_{3}), \epsilon_{3} \le \bruch{1}{2}\beta^{1-t} [/mm]


Bei B )
Wo ist hier der Unterschied zu A
x²-y² = (x+y)(x-y)


        
Bezug
Gleitkommazahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Do 24.05.2007
Autor: Marc

Hallo sgriesser! :-)

> Schätzen Sie den relativen Rundungsfehler für folgende
> Berechnungen mit Gleitkommazahlen x und y ab, wobei x,y [mm]\in M_{\beta}(t,[/mm]
> [L,U]):
>
> a)   [mm]R_{1}:=[/mm] rd(x²-y²),
> b)   [mm]R_{2}:=[/mm] rd((x-y)(x+y))
> Hallo an Alle und danke für eure Hilfe :-)
>  
> Also, mein Versuch bei dieser Aufgabe
> Bei A)
> Es gibt hier 3 Rundungen x², y² und bei der Subtraktion
>
> rd(x²) = [mm]x²(1+\epsilon_{1}), \epsilon_{1} \le \bruch{1}{2}\beta^{1-t}[/mm]

[ok]

> oder ist  [mm]\epsilon_{1} \le 5\beta^{-t}[/mm]

Diese Vereinfachung gilt nur für [mm] $\beta=10$, [/mm] denn da hat man [mm] $\bruch{1}{2}\beta^{1-t}=\bruch{1}{2}*10*10^{-t}=5*10^{-t}$ [/mm]

>  rd(y²) =  
> [mm]y²(1+\epsilon_{2}), \epsilon_{2} \le \bruch{1}{2}\beta^{1-t}[/mm]
>  
> rd( x² - y²) = [mm](x²(1+\epsilon_{1})[/mm] - y²(1 +
> [mm]\epsilon_{2})(1+\epsilon_{3}), \epsilon_{3} \le \bruch{1}{2}\beta^{1-t}[/mm]

Das ist bis hierhin nur eine Abschätzung der auftretenden absoluten Fehler. Damit muss nun eine Abschätzung der relativen Fehler bzw. des relativen Fehlers des Endresultats gewonnen werden... Also all' das muss noch in die Formel für die Fehleranalyse der Grundoperationen eingesetzt werden.

> Bei B )
> Wo ist hier der Unterschied zu A
> x²-y² = (x+y)(x-y)

In A braucht man 2 Multiplikationen und 1 Addition/Subtraktion, während in B 2 Additionen/Subtraktionen und 1 Multiplikation benötigt werden. Außerdem hast Du ja das Distributiv- und auch Assoziativgesetz angewendet, das bei den Gleitkomma-Operationen nicht gilt.

to be continued...

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]