matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenGleitkommazahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algorithmen und Datenstrukturen" - Gleitkommazahl
Gleitkommazahl < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitkommazahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 11.08.2011
Autor: lzaman

Aufgabe
Die Dualzahl 1100100110101100 soll in Dezimaldarstellung gebracht werden.

mit 1.Bit : VZ

Exponent hat die Wortlänge 6
und die Mantisse die Wortlänge 8


Guten Abend, ich komme nicht auf die Lösung -13,375.

VZ: 1 ist klar also - als Vorzeichen.

Exponent ist dann 100100
und die Mantisse 11010110

Wie verwende ich denn nun genau die Formel: [mm]\pm Mantisse \cdot Basis ^{\pm Exponent}[/mm] ?




        
Bezug
Gleitkommazahl: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Do 11.08.2011
Autor: felixf

Moin!

> Die Dualzahl 1100100110101100 soll in Dezimaldarstellung
> gebracht werden.
>  
> mit 1.Bit : VZ
>  
> Exponent hat die Wortlänge 6
>  und die Mantisse die Wortlänge 8
>  
> Guten Abend, ich komme nicht auf die Lösung -13,375.
>  
> VZ: 1 ist klar also - als Vorzeichen.
>  
> Exponent ist dann 100100
>  und die Mantisse 11010110

Die Mantisse entspricht im Dezimalsystem ja 214. Und offenbar ist $-214 [mm] \cdot 2^n [/mm] = -13.375$ genau dann, wenn $n = -4 ist. Also muss der Exponent -4 sein.

Zumindest falls die Mantisse wirklich als natuerliche Zahl interpretiert wird. Man kann sie auch als 1.1010110 auffassen, dann muesste $n = 3$ sein.

Beide Moeglichkeiten passen allerdings nicht wirklich zur Binaerdarstellung 100100. Irgendwas scheint hier nicht zu stimmen, oder ihr verwendet eine recht komische Definition von Gleitkommazahlen.

> Wie verwende ich denn nun genau die Formel: [mm]\pm Mantisse \cdot Basis ^{\pm Exponent}[/mm]
> ?

LG Felix


Bezug
                
Bezug
Gleitkommazahl: Konvention
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 11.08.2011
Autor: lzaman


Hi, wir verwenden die Konvention (ohne Hidden Bit)

V: Vorzeichen
E:Exponent als Charakteristik
M:Mantisse

V E E E E E E M M M M M M M M

Es muss irgendwie stimmen. Wir haben leider auch keine Übungen dazu gemacht.


Bezug
                        
Bezug
Gleitkommazahl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Do 11.08.2011
Autor: felixf

Moin,

> Hi, wir verwenden die Konvention (ohne Hidden Bit)
>
> V: Vorzeichen
>  E:Exponent als Charakteristik

ah, hier das passende Stichwort: Charakteristik. Ich vermute mal, der Bias ist 100000? Dann ist der Exponent +4.

>  M:Mantisse

Vielleicht wird die Mantisse als 0.M interpretiert, also 0.11010110 in diesem Fall. Dann ist $-0.M [mm] \cdot 2^{+4} [/mm] = -13.375$, da 13 = 1101 und 0.375 = 0.0110.

LG Felix


Bezug
                                
Bezug
Gleitkommazahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Do 11.08.2011
Autor: lzaman

Ja, danke genauso ist es. Die Mantisse wird als 0.M interpretiert, da ohne Hidden Bit.

Der Exponent berechnet sich dann mit

[mm]100100_2-100000_2=100_2=4_{10}[/mm]

Danke nochmals


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]