matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikGleitendes Teilchen an Feder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mechanik" - Gleitendes Teilchen an Feder
Gleitendes Teilchen an Feder < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleitendes Teilchen an Feder: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:14 So 20.05.2012
Autor: Unknown-Person

Aufgabe
Ein Teilchen mit MAsse m gleite reibungsfrei auf einer festen horizontalen Stange (x-Achse). Das Teilchen sei durch eine Feder mit dem Punkt P verbunden. Die Feder habe die Federkonstante k und im entspannten Zustand die Länge L.
a) Stellen Sie die Newton'sche Bewegungsgleichung auf.
b) Finden Sie geeignete verallgemeinerte Koordinaten und stellen Sie die Lagrangefunktion auf. Geben Sie die Lagrangesche Bewegungsgleichung zweiter Art an.

Wie noch aus der Skizze, die ich nicht zu zeigen brauch, ersichtlich ist, ist der Punkt P überhalb der x-Achse (also y-Koordinate:=l). Das Teilchen kann sich nur entlang der x-Achse bewegen.
Ich habe erstmal mit Lagrange angefangen.
Die kinetische Energie ist:
[mm] T=\bruch{1}{2}m*\dot{x}^2 [/mm]

Die aktuelle Länge der Feder, die auch wesentlich für die Kraft auf das Teilchen ist, ist s, die potentielle Energie ist:

[mm] V=\bruch{1}{2}k*s^2 [/mm]


Das ich x als verallgemeinerte Koordinate nehmen will und l eine bekannte Größe ist, dachte ich, dass ich s durch x und l ausdrücke, nämlich mit dem Satz des Pythagoras:

[mm] s=\wurzel{l^2+x^2} [/mm]

Die Lagrangefunktion L=T-V wäre demnach bekannt und das kann ich in die Euler-Lagrange-Gleichung einsetzen und bekomme als Endresultat raus:

[mm] m\ddot{x}=-\bruch{kx}{2*\wurzel{l^2+x^2}} [/mm]

Bei dieser Kraft gibt es nur eine Gleichgewichtslage, nämlich x=0, das dürfte unterhalb des Punktes P sein. Aber es müssen noch zwei sein. Nämlich, wenn die Feder die Länge L hat. Dafür gibt es dann zwei x-Koordinaten. [mm] x_L [/mm] und [mm] -x_L [/mm] nenne ich sie.

Wer kann helfen?
Vielen Dank

        
Bezug
Gleitendes Teilchen an Feder: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 22.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]