matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGleichverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Gleichverteilung
Gleichverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 09.06.2006
Autor: c.t.

Aufgabe
Aus dem Inneren eines Würfels werde zufällig der Pkt (x,y,z) gewählt

a) Bestimme die Wahrscheinlichkeit, dass zwei Koordinaten übereinstimmen

b) Bestimme die Wahrscheinlichkeit, dass die Koordinaten x, y, z monoton wachsend sind

Hallo,

ich habe die obige Aufgabe bearbeitet und bitte darum, dass jemand meine Lösung überprüfen kann.

Wir haben also o.B.d.A. das ZE [mm] ([0,1]^3, \IB^3, [/mm] P), wobei P eine Gleichvertlg. auf [mm] [0,1]^3 [/mm] ist.

a) sei A das gesucht Ereignis => A= {(x,y,z) [mm] \in [0,1]^3 [/mm] |x=y [mm] \vee [/mm] x=z [mm] \vee [/mm] y=z} ={[0,1] [mm] \times[x,x]\times[0,1] [/mm] } [mm] \cup{[0,1] \times[0,1]\times[x,x] } \cup{[0,1]\times[0,1]\times[y,y] } [/mm]

Es gilt nun P(A)= [mm] \bruch{\lambda^3(A)}{\lambda^3([0,1]^3)}=\bruch{\lambda^3(A)}{1}=\lambda^3(A) [/mm]
[mm] =\lambda^3({[0,1]\times[x,x]\times[0,1] } \cup{[0,1]\times[0,1]\times [x,x] } \cup{[0,1]\times[0,1]\times[y,y] } [/mm] )=1*0*1+1*1*0+1*1*0=0


b) B={(x,y,z) [mm] \in [0,1]^3|x\ley\lez} [/mm] = [mm] [0,1]\times[x,1]\times[y,1] [/mm]

[mm] P(B)=\lambda^3(B)= \lambda^3([0,1]\times[x,1]\times[y,1]) [/mm] = 1*(-x)*(-y)=xy

Beide Ergebnisse scheinen mir jedoch etwas seltsam.

Es wäre schön, wenn sich jemand finden würde, der meine Ergebnisse kommentiert.

Die Frage wurde in keinen anderen Internetforum von mir gestellt.


        
Bezug
Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Fr 09.06.2006
Autor: Walde

Hi Christoph,

also hier meine Meinung dazu, aber natürlich ohne Gewähr.

Bei der a) scheint mir alles in Ordung zu sein. Dass die W'keit Null ist, halte ich für sinnvoll, da es ja eine stetige Verteilung ist und demzufolge die W'keit das bestimmte Punkte (die ja bezügl. des Masses Nullmengen sind) angenommen werden Null ist.

Bei der b) steckt meiner Meinung nach ein Fehler drin:
Fall z.B. x=0 ist, ist bereits P(B)=0, aber das kann ja nicht richtig sein.Der Fehler ist, weil du [mm] \lambda([x,1])=-x [/mm] (analog auch y) hast, aber ich denke es sollte richtig
[mm] \lambda([x,1])=1-x [/mm] heissen.

Dann ergibt sich
[mm] P(B)=\lambda^3(B)= \lambda^3([0,1]\times[x,1]\times[y,1])=1*(1-x)*(1-y)=1-y-x+xy [/mm]

Aber wie gesagt, ohne Gewähr ;-)

L G walde

Bezug
        
Bezug
Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 11.06.2006
Autor: DirkG

Zu a) ist im wesentlichen alles gesagt.

Bei b) muss eine Zahl herauskommen, die kann nicht noch von $x,y$ abhängen!!!

Es liegt eine gleichmäßig stetige Verteilung im Würfel vor, d.h., mit Dichte 1 dort. Es folgt für die gesuchte Wahrscheinlichkeit
$$P(X<Y<Z) = [mm] \int\limits_0^1 [/mm] ~ [mm] \int\limits_x^1 [/mm] ~ [mm] \int\limits_y^1 [/mm] ~ f(x,y,z) ~ [mm] \mathrm{d}z [/mm] ~ [mm] \mathrm{d}y [/mm] ~ [mm] \mathrm{d}x [/mm] = [mm] \int\limits_0^1 [/mm] ~ [mm] \int\limits_x^1 [/mm] ~ [mm] \int\limits_y^1 [/mm] ~ 1 ~ [mm] \mathrm{d}z [/mm] ~ [mm] \mathrm{d}y [/mm] ~ [mm] \mathrm{d}x$$ [/mm]
Und das sollte ausrechenbar sein.

Alternativ kann man sich auch elementargeometrisch überlegen, was das für ein Körper innerhalb des Einheitswürfels ist, über den da integriert wird.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]