matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungsysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Gleichungsysteme
Gleichungsysteme < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungsysteme: Brüche
Status: (Frage) beantwortet Status 
Datum: 13:13 Sa 29.09.2012
Autor: b.reis

Aufgabe
Bestimmen Sie jeweils die Lösungsmenge mit dem Gleichsetzverfahren!

5x+2,25y+4,5=0
[mm] 3\bruch{1}{3}x+\bruch{2}{3}y-3=0 [/mm]

Guten Tag,

mein Ergebniss ist irgendwie immer falsch, nun müsste ich wissen ob es an den Brüchen liegt


Ich nehme die 2te Gleichung mal 3 um die Brüche weg zu bekommen:

[mm] 3\bruch{1}{3}x+\bruch{2}{3}y-3=0 [/mm]   |*3


Das sieht dann so aus, 10x+2y-9=0  

Stimmt das soweit oder was hab ich falsch gemacht ?


Vielen dank

benni

        
Bezug
Gleichungsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 29.09.2012
Autor: Diophant

Hallo Benni,

> Stimmt das soweit oder was hab ich falsch gemacht ?

Bis dahin stimmt das. Der Fehler muss also woanders passiert sein. Gib doch am besten mal deine komplette Rechnung an. Das mag fürs erste etwas Mehrarbeit sein, aber letztendlich wird man den Fehler so schneller finden können.


Gruß, Diophant

Bezug
                
Bezug
Gleichungsysteme: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 13:28 Sa 29.09.2012
Autor: Richie1401

Hallo Diophant,

deine Aussage stimmt leider nicht. Siehe dazu auch meine Antwort.
Eventuell kannst/magst du deinen Beitrag dementsprechend noch einmal abändern.

Sonntägliche Grüße!

Bezug
                        
Bezug
Gleichungsysteme: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 13:31 Sa 29.09.2012
Autor: angela.h.b.

s.Valeries Hinweis


Bezug
                
Bezug
Gleichungsysteme: system
Status: (Frage) beantwortet Status 
Datum: 13:43 Sa 29.09.2012
Autor: b.reis

Aufgabe
5x+2,25y+4,5=0
[mm] 3\bruch{1}{3}x+\bruch{2}{3}y-3=0 [/mm]

5x+2,25y+4,5=0
[mm] 3\bruch{1}{3}x+\bruch{2}{3}y-3=0 [/mm]

[mm] 3\bruch{1}{3}x+\bruch{2}{3}y-3=0 [/mm]   |*3

5x+2,25y+4,5=0
       10x+2y-9=0  

Jetzte setze ich die Beiden gleich und teile sie durch den Koeffizienten von x


x= [mm] \bruch{2,25y+4,5}{5}=\bruch{2y-9}{10} [/mm]

Hier hatte ich einen vorzeichen Fehler aber weiter,

Dann nehme ich Links und Recht vom = mal die Nenner

10(2,25y+4,5)=22,5y+45
  5(2y-9)         =10y-45

22,5y+45=10y-45  |-10y|-45

12,5y=-90
    y=7,2

jetzt Stimmts

Danke

benni

Bezug
                        
Bezug
Gleichungsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 29.09.2012
Autor: Diophant

Hallo Benni,

der Fehler liegt offensichtlich bei der Multiplikation der anderen Gleichung:

> 5x+2,25y+4,5=0
> 10x+2y-9=0

Das ist falsch, denn 2.25*2=4.5

> Jetzte setze ich die Beiden gleich und teile sie durch den
> Koeffizienten von x
>
>
> x= [mm]\bruch{2,25y+4,5}{5}=\bruch{2y-9}{10}[/mm]
>
> Hier hatte ich einen vorzeichen Fehler aber weiter,
>
> Dann nehme ich Links und Recht vom = mal die Nenner
>
> 10(2,25y+4,5)=22,5y+45
> 5(2y-9) =10y-45
>
> 22,5y+45=10y-45 |-10y|-45
>
> 12,5y=-90
> y=7,2

Irgendwie hast du es aber doch geschafft, den obigen Fehler aus deiner Rechnung rauszuhalten. :-) Allerdings: ganz zum Schluss steckt wieder ein Vorzeichenfehler!


Gruß, Diophant

Bezug
        
Bezug
Gleichungsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Sa 29.09.2012
Autor: Richie1401

Hallo,

ich muss Diophant widersprechen.

> Bestimmen Sie jeweils die Lösungsmenge mit dem
> Gleichsetzverfahren!
>  
> 5x+2,25y+4,5=0
>  [mm]3\bruch{1}{3}x+\bruch{2}{3}y-3=0[/mm]
>  Guten Tag,
>  
> mein Ergebniss ist irgendwie immer falsch, nun müsste ich
> wissen ob es an den Brüchen liegt
>  
>
> Ich nehme die 2te Gleichung mal 3 um die Brüche weg zu
> bekommen:
>  
> [mm]3\bruch{1}{3}x+\bruch{2}{3}y-3=0[/mm]   |*3
>  
>
> Das sieht dann so aus, 10x+2y-9=0  

Wie kommst du denn hier auf 10x?
Das ist also falsch.

>
> Stimmt das soweit oder was hab ich falsch gemacht ?
>
>
> Vielen dank
>  
> benni


Bezug
        
Bezug
Gleichungsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Sa 29.09.2012
Autor: Valerie20

Ich würde dann gerne Richi widersprechen ;-)
und Diophant zustimmen.

[mm] $3\frac{1}{3}=\frac{10}{3}$ [/mm]


Bezug
                
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Sa 29.09.2012
Autor: Richie1401

Hallo Valerie,

habe ich einen an der Klatsche, oder was ist hier los?

> Ich würde dann gerne Richi widersprechen ;-)
>  und Diophant zustimmen.
>  
> [mm]3\frac{1}{3}=\frac{10}{3}[/mm]

Seit wann stimmt denn das?
Drei mal ein Drittel sind meiner Meinung nach 1 und 10/3 sind sowas wie 3,33...
1=3,33 ?!?!

>  


Bezug
                        
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Sa 29.09.2012
Autor: Valerie20

Das nennt man einen gemischten Bruch.

z.B.

[mm] $3\frac{1}{3}=3+\frac{1}{3}$ [/mm]


Bezug
                                
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Sa 29.09.2012
Autor: Valerie20

Allerdings besteht hier schon verwechslungsgefahr, da man die Schreibweise, wie du es getan hast auch als [mm] $3\red{\cdot}\frac{1}{3}$ [/mm]
auffassen kann.

Allerdings wäre das bei der Aufgabenstellung natürlich recht bescheuert, da man gleich [mm] $3\cdot\frac{1}{3}x=x$ [/mm]
Hätte schreiben können.





Bezug
                                
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Sa 29.09.2012
Autor: Richie1401

*In Erdboden versink*

Oh Leute, sorry, besonders an Diophant!

Und ich dachte, es sei einfach vom Aufgabensteller schlecht hingeschrieben. Und ehrlich gesagt, ist das gar nicht mal so abwegig. (Zu meiner Verteidigung).

Das man das Multiplikationszeichen weglassen darf ist ja allgemein bekannt. Ein + weg zu lassen, naja....

Ich habe vorhin echt an mir gezweifelt...spätestens daran merkt man aber, dass so manche Sachen aus der Schule einfach verschwunden sind.

Bezug
                        
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Sa 29.09.2012
Autor: Diophant

Hallo Richie,

es liegt hier die sog. gemischte Schreibweise rationaler Zahlen vor (sprich: 'drei Ganze, ein Drittel'). Es mag sein, dass man diese Schreibweise in der höheren Mathematik nicht verwendet und mancher Mathematiker hält diese Art der Notation für unglücklich. Dennoch: in der Schule und im Alltag ist sie Standard, und ich würde dich auch bitten, in einem solchen Fall nicht so eine Schärfe:

> habe ich einen an der Klatsche, oder was ist hier los?

reinzubringen. Man sollte das sachlich diskutieren, und ich möchte mal als Argument für diese Schreibweise ins Feld führen, dass sie die Größe von rationalen Zahlen, die betragsmäßig größer als 1 sind, viel anschaulicher werden lässt als die echten Brüche.


Gruß, Diophant

Bezug
                                
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Sa 29.09.2012
Autor: b.reis

Das ist genau der Grund warum uns unsere Lehrerin mit so vielen Brüchen arbeiten lässt, damit wir ja nichts übergehen/übersehen. ;)

Bezug
                                
Bezug
Gleichungsysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Sa 29.09.2012
Autor: Richie1401

Hallo Diophant,

entsprechend obiger Mitteilung ist es wirklich so, dass ich diese Art von Brüchen sicherlich seit ca. 5 Jahren einfach nicht mehr gesehen habe. Man nutzt es einfach nicht.


> > habe ich einen an der Klatsche, oder was ist hier los?
>  
> reinzubringen. Man sollte das sachlich diskutieren[...]

Ganz deiner Meinung. Der Kommentar war auch durchaus an mich selbst gerichtet, weil ich schon arg an mir gezweifelt habe. Auch ein zwinkender Smiley hätte noch gut dazu gepasst, den ich aber in der Zeit nicht in Erwägung zog.
Bitte diese Zeile nicht so ernst nehmen. Wenn ich das jetzt selber lese finde ich es auch sehr forsch und wohl doch eher unangebracht. Das sollte es aber nicht sein.

Hallo Valerie,

Ich bedanke mich bei dir, Valerie, dass du mir noch einmal Schulstoff beigebracht hat. ;-)
Wegen der "sinnlosen Notation" [mm] (3*\frac{1}{3}=1): [/mm] Was ist in der Schule alles sinnvoll und sinnfrei? In der obigen Aufgabe wurde eine Zahl auch als Dezimalzahl geschrieben. Es wurden also echte Brüche, diese gemischten Brüche und die Dezimalzahlen bemüht, um die Aufgabe niederzuschreiben. Ob dies auch alles sinnvoll ist, ist wiederum fraglich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]