matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungssystem mit Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Gleichungssystem mit Wurzel
Gleichungssystem mit Wurzel < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem mit Wurzel: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:42 So 01.03.2009
Autor: jaktens

Aufgabe
[mm] Gegeben:f(x)=4*\wurzel{x}*e^{-x/2} [/mm]
        f´ [mm] (x)=2*(\bruch{1}{\wurzel{x}}-\wurzel{x})*e^{-x/2} [/mm]
Für [mm] x\ge4 [/mm] soll der Graph von g mit [mm] g(x)=\wurzel{a*x+b} [/mm] verwendet werden. Demnach muss f(x)=g(x) und f´(x)=g´(x) gelten.

In der Folgeaufgabe ist [mm] g(x)=\bruch{4}{e^2}*\wurzel{16-3x} [/mm] zur weiteren Berechnung gegeben, gehe deshalb davon aus, das g(x) die gesuchte Lösung ist.

[mm] x\ge0, x\in\IR [/mm]

Danke erst mal im voraus!!
Ich hab jetzt durch allerlei Umformungen versucht, ein schlüssiges Ergebnis zu bekommen, was mir leider nicht gelungen ist.
Insbesondere die Wurzel macht mir Probleme bzw Kopfschmerzen.
Darf ich überhaupt quadrieren, um ein mir bekanntes Gleichungssystem zu erzeugen oder gibt es hier andere Lösungswege?
Ich komme auf folgendes Gleichungssystem:

I  [mm] \bruch{8}{e^2}=\wurzel{4*a+b} [/mm]
II [mm] \bruch{-3}{e^2}=\bruch{a}{\wurzel{4*a+b}} [/mm]
------
I´  [mm] \bruch{64}{e^4}=4*a+b [/mm]
II [mm] \bruch{9}{e^4}=\bruch{a^2}{4a+b} [/mm]  Vorzeichenfehler??
------
I´´ [mm] \bruch{16}{e^4}-\bruch{b}{4}=a [/mm]

Nun eingesetzt in alle Gleichungen.....und kein Ergebnis.
Ist mein Lösungsweg grundsätzlich falsch und kann zu keinem Ergebnis führen??




        
Bezug
Gleichungssystem mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 01.03.2009
Autor: Al-Chwarizmi


> Gegeben: [mm]f(x)=4*\wurzel{x}*e^{-x/2}[/mm]
>          $\ f$'[mm](x)=2*(\bruch{1}{\wurzel{x}}-\wurzel{x})*e^{-x/2}[/mm]    [ok]

> Für [mm]x\ge4[/mm] soll f(x)von g mit [mm]g(x)=\wurzel{a*x+b}[/mm] verwendet
> werden.      [verwirrt]

Ich verstehe nicht, was damit gemeint sein soll.
Geht es um die Funktionsverkettung f(g(x)) oder
um etwas ganz anderes ?

Erkläre dies bitte !

Demnach muss f(x)=g(x) und f´(x)=g´(x) gelten.    [verwirrt] [verwirrt]

LG    Al-Chw.

  

>  
> In der Folgeaufgabe ist [mm]g(x)=\bruch{4}{e^2}*\wurzel{16-3x}[/mm]
> zur weiteren Berechnung gegeben, gehe deshalb davon aus,
> das g(x) die gesuchte Lösung ist.
>  
> [mm]x\ge0, x\in\IR[/mm]
>  Danke erst mal im voraus!!
>  Ich hab jetzt durch allerlei Umformungen versucht, ein
> schlüssiges Ergebnis zu bekommen, was mir leider nicht
> gelungen ist.
>  Insbesondere die Wurzel macht mir Probleme bzw
> Kopfschmerzen.
>  Darf ich überhaupt quadrieren, um ein mir bekanntes
> Gleichungssystem zu erzeugen oder gibt es hier andere
> Lösungswege?
>  Ich komme auf folgendes Gleichungssystem:
>  
> I  [mm]\bruch{8}{e^2}=\wurzel{4*a+b}[/mm]
>  II [mm]\bruch{-3}{e^2}=\bruch{a}{\wurzel{4*a+b}}[/mm]
>  ------
>  I´  [mm]\bruch{64}{e^4}=4*a+b[/mm]
>  II [mm]\bruch{9}{e^4}=\bruch{a^2}{4a+b}[/mm]  Vorzeichenfehler??
>  ------
>  I´´ [mm]\bruch{16}{e^4}-\bruch{b}{4}=a[/mm]
>  
> Nun eingesetzt in alle Gleichungen.....und kein Ergebnis.
>  Ist mein Lösungsweg grundsätzlich falsch und kann zu
> keinem Ergebnis führen??
>
>
>  


Bezug
                
Bezug
Gleichungssystem mit Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 So 01.03.2009
Autor: jaktens

Entschuldigung, so liest sich die Aufgabe falsch, da ging über copy and paste was schief und ich habs überlesen.

Die komplette Aufgabenstellung beinhaltet eine Kurvendiskussion von f(x), die Aufgabe lautet: Volumen einer Birne.
Von [mm] 0\le [/mm] x [mm] \le4 [/mm] soll f(x) verwendet werden, ab 4 dann der Graph von g. Demnach muss nicht nur der Funktionswert der Ausgangsgleichung (f(4)) übereinstimmen, sondern auch die Steigung (f´(4).

Bezug
        
Bezug
Gleichungssystem mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 01.03.2009
Autor: Al-Chwarizmi


> [mm]Gegeben:f(x)=4*\wurzel{x}*e^{-x/2}[/mm]
>          f´[mm](x)=2*(\bruch{1}{\wurzel{x}}-\wurzel{x})*e^{-x/2}[/mm]

>  Für [mm]x\ge4[/mm] soll der Graph von g mit [mm]g(x)=\wurzel{a*x+b}[/mm]
> verwendet werden. Demnach muss f(x)=g(x) und f´(x)=g´(x)
> gelten.

(An der Stelle x=4 !)
  

> In der Folgeaufgabe ist [mm]g(x)=\bruch{4}{e^2}*\wurzel{16-3x}[/mm]
> zur weiteren Berechnung gegeben, gehe deshalb davon aus,
> das g(x) die gesuchte Lösung ist.
>  
> [mm]x\ge0, x\in\IR[/mm]

>  Insbesondere die Wurzel macht mir Probleme bzw
> Kopfschmerzen.
>  Darf ich überhaupt quadrieren, um ein mir bekanntes
> Gleichungssystem zu erzeugen

Gleichungen quadrieren darf man grundsätzlich schon;
nur muss man beachten, dass dadurch eine Gleichung
entsteht, welche noch zusätzliche Lösungen haben kann.
(keine Äquivalenzumformung)

>  Ich komme auf folgendes Gleichungssystem:
>  
> I  [mm]\bruch{8}{e^2}=\wurzel{4*a+b}[/mm]      [ok]
>  II [mm]\bruch{-3}{e^2}=\bruch{a}{\wurzel{4*a+b}}[/mm]   [notok]

Hier fehlt rechts ein Faktor 2 im Nenner !

>  ------
>  I´  [mm]\bruch{64}{e^4}=4*a+b[/mm]     [ok]
>  II [mm]\bruch{9}{e^4}=\bruch{a^2}{4a+b}[/mm]  Vorzeichenfehler??

Kein Vorzeichenfehler, aber jetzt muss im Nenner rechts noch
ein Faktor 4 dazu kommen.


>  ------
>  I´´ [mm]\bruch{16}{e^4}-\bruch{b}{4}=a[/mm]
>  
> Nun eingesetzt in alle Gleichungen.....und kein Ergebnis.
>  Ist mein Lösungsweg grundsätzlich falsch und kann zu
> keinem Ergebnis führen??

Wenn du den Fehler berichtigst und konsequent weiter
rechnest, solltest du zum korrekten Ergebnis kommen.
Es gibt rechnerisch zuerst zwei Lösungspaare, von welchen
aber nur eines die gestellten Bedingungen vollständig
erfüllt.  Für das b der richtigen Lösung habe ich den Wert
[mm] b\approx [/mm] 4.689 erhalten.


LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]