matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGleichungssystem mit W' bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Gleichungssystem mit W' bilden
Gleichungssystem mit W' bilden < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem mit W' bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Mo 08.10.2007
Autor: Braunstein

Hallo,
die Wahrscheinlichkeit ist ja eine Funktion zB P(A). A ist ja das Ereignis und ist eine disjunkte Vereinigung von Elementarereignissen [mm] \{\omega_{i}\}. [/mm] Dies bedeutet nun:

[mm] P(A)=P(\{\omega_{1}\}\cup \{\omega_{2}\}\cup \{\omega_{3}\}\cup \{\omega_{4}\}\cup \{\omega_{5}\}\cup \{\omega_{6}\})=P(\bigcup_{\omega_{i}\in A}\{\omega_{i}\})=\summe_{i}^{}P(\{\omega_{i}|\omega_{i} \in A\}) [/mm]

Wenn ich mir das so ansehe, stellt sich folgende Frage:

Ist es möglich, P(A) in der Form von [mm] P(\{\omega_{1}\})+P(\{\omega_{2}\})+P(\{\omega_{3}\})+P(\{\omega_{4}\})+P(\{\omega_{5}\})+P(\{\omega_{6}\}) [/mm] anzugeben?

Eigentlich schon, denn schließlich ist ja auch [mm] P(\Omega)=P(\{1\})+P(\{2\})+P(\{3\})+P(\{4\})+P(\{5\})+P(\{6\})=1 [/mm] wenn für [mm] \Omega=(\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}) [/mm] gilt ... ODER???

Denn dann kann ich zB Gleichungssysteme bilden, zB habe ich gegeben:

[mm] P(\{1,2,3,4\})=\bruch{5}{6} [/mm]
[mm] P(\{2,3\})=\bruch{1}{3} [/mm]
.
.
.

Wenn es nun heißt, dass man die Wahrscheinlichkeit der einzelnen [mm] \omega_{i} [/mm] berechnen soll, dann muss man lediglich [mm] P(\{1\},\{2\},\{3\},\{4\})=\bruch{5}{6} [/mm] nach [mm] \bruch{5}{6}=P(\{1\})+P(\{2\})... [/mm] umformen, und [mm] P(\{1\}) [/mm] als "Variable" ansehen. Oder klappt das nicht?

Freue mich auf eine Antwort.



PS: Es ist zB [mm] P(A\cup [/mm] B) auch [mm] P(A)\cup [/mm] P(B).

        
Bezug
Gleichungssystem mit W' bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 08.10.2007
Autor: Riley

Hallo Hannes,

Zunächst gilt nach der Additivität von Wahrscheinlichkeitsmaßen:

P(A [mm] \cup [/mm] B) = P(A) + P(B) - P(A [mm] \cap [/mm] B)

und allgemeiner für Ereignisse [mm] A_1,...,A_n [/mm]

[mm] P(A_1 \cup [/mm] ... [mm] \cup A_n) [/mm] = [mm] \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1<...
Das heißt wir müssen die Durchschnitte die wir zu viel gezählt haben und den Gesamtdurchschnitt wieder abziehen.

Das ganze vereinfacht sich aber wenn man paarweise disjunkte Mengen hat, wie in deinem Beispiel


> die Wahrscheinlichkeit ist ja eine Funktion zB P(A). A ist
> ja das Ereignis und ist eine disjunkte Vereinigung von
> Elementarereignissen [mm]\{\omega_{i}\}.[/mm] Dies bedeutet nun:
>
> [mm]P(A)=P(\{\omega_{1}\}\cup \{\omega_{2}\}\cup \{\omega_{3}\}\cup \{\omega_{4}\}\cup \{\omega_{5}\}\cup \{\omega_{6}\})=P(\bigcup_{\omega_{i}\in A}\{\omega_{i}\})=\summe_{i}^{}P(\{\omega_{i}|\omega_{i} \in A\})[/mm]
>  
> Wenn ich mir das so ansehe, stellt sich folgende Frage:
>
> Ist es möglich, P(A) in der Form von
> [mm]P(\{\omega_{1}\})+P(\{\omega_{2}\})+P(\{\omega_{3}\})+P(\{\omega_{4}\})+P(\{\omega_{5}\})+P(\{\omega_{6}\})[/mm]
> anzugeben?

>
ja !


> Eigentlich schon, denn schließlich ist ja auch
> [mm]P(\Omega)=P(\{1\})+P(\{2\})+P(\{3\})+P(\{4\})+P(\{5\})+P(\{6\})=1[/mm]
> wenn für [mm]\Omega=(\{1\},\{2\},\{3\},\{4\},\{5\},\{6\})[/mm] gilt
> ... ODER???
>  
> Denn dann kann ich zB Gleichungssysteme bilden, zB habe ich
> gegeben:
>
> [mm]P(\{1,2,3,4\})=\bruch{5}{6}[/mm]
>  [mm]P(\{2,3\})=\bruch{1}{3}[/mm]
>  .
>  .
>  .
>  
> Wenn es nun heißt, dass man die Wahrscheinlichkeit der
> einzelnen [mm]\omega_{i}[/mm] berechnen soll, dann muss man
> lediglich [mm]P(\{1\},\{2\},\{3\},\{4\})=\bruch{5}{6}[/mm] nach
> [mm]\bruch{5}{6}=P(\{1\})+P(\{2\})...[/mm] umformen, und [mm]P(\{1\})[/mm]
> als "Variable" ansehen. Oder klappt das nicht?

wenn ich dich richtig verstanden habe müsste das fuktionieren.


> PS: Es ist zB [mm]P(A\cup[/mm] B) auch [mm]P(A)+ P(B). [/mm]

wie gesagt, nur unter der Voraussetzung dass A und B disjunkt sind.

Viele Grüße,
Riley




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]