matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGleichungssystem mit Brüchen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Gleichungssystem mit Brüchen
Gleichungssystem mit Brüchen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem mit Brüchen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:51 Mo 15.08.2005
Autor: benji

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo...

leider muss ich schon morgen einen Eingangstest absolvieren, versuche meine Oberstufenkenntnisse wieder aufzufrischen, aber das klappt nun mal an einigen Stellen leider nicht....

Ich bin jetzt bei folgendem Gleichungssystem aus zwei Gleichungen angelangt:

1.) [mm] \bruch{x+y}{x-y} [/mm] = [mm] \bruch{7}{3} [/mm]

2.) [mm] \bruch{x+1}{y+1} [/mm]  = [mm] \bruch{12}{5} [/mm]

... wie eliminiere ich die Nenner mit den Variablen, dass ich weiterrechnen kann bzw. wie loese ich das Gleichungssystem?

Für jegliche Hilfe äußerst dankbar...
benji

        
Bezug
Gleichungssystem mit Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mo 15.08.2005
Autor: Sigrid

Hallo benji,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> Hallo...
>  
> leider muss ich schon morgen einen Eingangstest
> absolvieren, versuche meine Oberstufenkenntnisse wieder
> aufzufrischen, aber das klappt nun mal an einigen Stellen
> leider nicht....
>  
> Ich bin jetzt bei folgendem Gleichungssystem aus zwei
> Gleichungen angelangt:
>  
> 1.) [mm]\bruch{x+y}{x-y}[/mm] = [mm]\bruch{7}{3}[/mm]
>
> 2.) [mm]\bruch{x+1}{y+1}[/mm]  = [mm]\bruch{12}{5}[/mm]
>
> ... wie eliminiere ich die Nenner mit den Variablen, dass
> ich weiterrechnen kann bzw. wie loese ich das
> Gleichungssystem?

Du multiplizierst beide Gleichungen jeweils mit dem Hauptnenner. Ich zeige es dir bei Gl. 1

[mm]\bruch{x+y}{x-y}[/mm] = [mm]\bruch{7}{3}[/mm]    |[mm] \cdot 3(x-y) [/mm]
[mm] \gdw 3 (x+y) = 7(x-y) [/mm] mit [mm] x \not= y [/mm]
[mm] \gdw 3x + 3y = 7x - 7y [/mm]

Ich denke, jetzt kannst du weiter. Wenn noch Fragen auftreten, melde dich.
Du musst aber noch auf eines achten: Deine Lösung muss im Definitionsbereich liegen, d.h. für deine Werte von x und y darf der Nenner in keiner der beiden Gleichungen 0 werden.

Gruß
Sigrid

>  
> Für jegliche Hilfe äußerst dankbar...
>  benji

Bezug
                
Bezug
Gleichungssystem mit Brüchen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 15.08.2005
Autor: benji

Tschuldigung, ich wollte die Antwort nicht so grausam rot als fehlerhaft darstellen...

Vielen Dank für die Hilfe, allerdings glaube ich, dass mir damit bei dem Gleichungssystem nicht geholfen ist, da ich jetzt keine Zahlen mehr habe... also währen x und y immer 0....

Bezug
        
Bezug
Gleichungssystem mit Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 15.08.2005
Autor: svenchen

Hallo, leider gibt es viele Lösungsmöglichkeiten/Lösungswege für deine Aufgabe, hier ist einer:

Es sei ein LGS gegeben mit



[mm] \vmat{ \bruch{x + y}{x - y} = \bruch{7}{3} \\ \bruch{x + 1}{y + 1} = \bruch{12}{5}} [/mm]

Du musst zuerst die Gleichungen umformen.

Gleichung 1:

[mm] \bruch{x + y}{x - y} [/mm] =  [mm] \bruch{7}{3} [/mm]

x + y = [mm] \bruch{7 (x - y)}{3} [/mm]

3(x + y) = 7x - 7y
3x + 3y = 7x - 7y
4x - 10y = 0

Gleichung 2:

[mm] \bruch{x + 1}{y + 1} [/mm] =  [mm] \bruch{12}{5} [/mm]

[...]

12y - 5x + 7 = 0

Das LGS Lautet also:

[mm] \vmat{ 4x - 10y = 0 \\ 12y - 5x + 7 = 0 } [/mm]

Löse z.B. Gleichung 1 nach x auf:
4x = 10 y   [mm] \Rightarrow [/mm]  x = 2,5y

setzt x = 2,5y in Gleichung 2 ein:

12y - 5(2,5y)+7=0
12y - 12,5y + 7 = 0
- 0,5y = -7
y = 14

setze y=14 in z.B. Gleichung 1:

4x - 10*14 = 0
x = 35




Bezug
                
Bezug
Gleichungssystem mit Brüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mo 15.08.2005
Autor: benji

super, vielen Dank... ich hatte doch tatsächlich einfach die +7 in der zweiten Gleichung übersehen! dachte es wäre kein zahlenwert mehr in einer der beiden umgeformten gleichungen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]