matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Gleichungssystem
Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 10.02.2013
Autor: Clark

Aufgabe
Gegeben ist das GLS:

[mm] \vektor{2x & +y & +z & =0 \\ -2ax & +ay & +9z & =6 \\ 2x & +2y & +az & =1} [/mm]

a) Für welche a [mm] \in \IR [/mm] ist das GLS eindeutig lösbar?
b) Für welche a [mm] \in \IR [/mm] existieren unendlich viele Lösungen?
c) Für welche a [mm] \in \IR [/mm] existiert keine keine Lösung?
d) Man berechne die Lösung für a=1!
e) Man berechne die Lösung zu b)!

Hallo Community!

Ich würde mich freuen, wenn ihr mir bei dieser Aufgabenstellung weiterhelfen könnt.

Mein Lösungsansatz ist bisher dieser:

zu a)
Hier habe ich über das "Sarrus-Verfahren" folgendes rausbekommen:

0= 4a² - 6a - 18

und mit der pq-Formel dann folgendes erhalten:

a1= 3
a2= -1,5

a [mm] \in \IR [/mm] \ [mm] \{-1,5;3\} [/mm]

Frage 1: Ist diese Aufgabe damit erfüllt (sind meine Ergebnisse korrekt)?

zu b) + zu c)
Bei diesen beiden Fragen, komme ich nicht weiter.  

Frage 3: Kann mir bitte Jemand erklären wie hier der Lösungsansatz ist?

zu d)
Hier habe ich für a die 1 eingesetzt und bekomme mit "Gauß" folgendes raus:

x= -0,7
y= 1
z= 0,4

Frage 3: Ist diese Aufgabe damit erfüllt (sind meine Ergebnisse korrekt)?


zu e)

Hier weiß ich ebendfalls nicht genau wie ich vorgehen soll. Mein erster Gedanke war, dass man die -1,5 und die 3 in das Gleichungssystem einsetzt und dann "Gauß" anwendet.

hab das mal so mit dem TS berechnet. Da kommt dann raus:
für 3: keine unbestimmte Lösung
für -1,5: keine Lösung

Allerdings schaffe ich es schriftlich immer auf werte für x,y und z (und bin der Meinung das ich bei Gauß nichts falsch gemacht habe). Kann ja dann aber eigentlich nicht sein oder?!

"Frage 5": Auch hier wäre ich dankbar für einen Lösungsansatz.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 So 10.02.2013
Autor: Clark

Meine natürlich:

a)
Frage 1: Ist diese Aufgabe damit erfüllt (sind meine Ergebnisse korrekt)?

b) + c)
Frage 2: Kann mir bitte Jemand erklären wie hier der Lösungsansatz ist?

d)
Frage 3: Ist diese Aufgabe damit erfüllt (sind meine Ergebnisse korrekt)?

e)
"Frage 4": Auch hier wäre ich dankbar für einen Lösungsansatz.




Bezug
        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 10.02.2013
Autor: Diophant

Hallo,

> Gegeben ist das GLS:
>
> [mm]\vektor{2x & +y & +z & =0 \\ -2ax & +ay & +9z & =6 \\ 2x & +2y & +az & =1}[/mm]
>
> a) Für welche a [mm]\in \IR[/mm] ist das GLS eindeutig lösbar?
> b) Für welche a [mm]\in \IR[/mm] existieren unendlich viele
> Lösungen?
> c) Für welche a [mm]\in \IR[/mm] existiert keine keine Lösung?
> d) Man berechne die Lösung für a=1!
> e) Man berechne die Lösung zu b)!
> Hallo Community!
>
> Ich würde mich freuen, wenn ihr mir bei dieser
> Aufgabenstellung weiterhelfen könnt.
>
> Mein Lösungsansatz ist bisher dieser:
>
> zu a)
> Hier habe ich über das "Sarrus-Verfahren" folgendes
> rausbekommen:
>
> 0= 4a² - 6a - 18
>
> und mit der pq-Formel dann folgendes erhalten:
>
> a1= 3
> a2= -1,5
>
> a [mm]\in \IR[/mm] \ [mm]\{-1,5;3\}[/mm]
>
> Frage 1: Ist diese Aufgabe damit erfüllt (sind meine
> Ergebnisse korrekt)?

Sie sind korrekt, aber ich halte deine Vorgehensweise via Determinante für ungeschickt.

>
> zu b) + zu c)
> Bei diesen beiden Fragen, komme ich nicht weiter.

> Frage 3: Kann mir bitte Jemand erklären wie hier der
> Lösungsansatz ist?
>

Es wäre besser gewesen, du hättest die Lösungsmenge per Gaußverfahren in Abhängigkeit von a) bestimmt. Dann hättest du sofort eingesehen, dass für die von dir ermittelten Lösungen für a das LGS einmal eine leere, das andere mal eine unendliche Lösungsmenge besitzt.

> zu d)
> Hier habe ich für a die 1 eingesetzt und bekomme mit
> "Gauß" folgendes raus:
>
> x= -0,7
> y= 1
> z= 0,4
>
> Frage 3: Ist diese Aufgabe damit erfüllt (sind meine
> Ergebnisse korrekt)?
>

Das soll Frage 4 sein? ;-)
Ja, die sind korrekt, gib aber die Lösungen besser als Bruchzahlen an!

>
> zu e)
>
> Hier weiß ich ebendfalls nicht genau wie ich vorgehen
> soll. Mein erster Gedanke war, dass man die -1,5 und die 3
> in das Gleichungssystem einsetzt und dann "Gauß" anwendet.
>
> hab das mal so mit dem TS berechnet. Da kommt dann raus:
> für 3: keine unbestimmte Lösung
> für -1,5: keine Lösung
>
> Allerdings schaffe ich es schriftlich immer auf werte für
> x,y und z (und bin der Meinung das ich bei Gauß nichts
> falsch gemacht habe). Kann ja dann aber eigentlich nicht
> sein oder?!
>
> "Frage 5": Auch hier wäre ich dankbar für einen
> Lösungsansatz.

Setze a=3, das ist ja derjenige Fall mit den unendlich vielen Lösungen. Dies führt zu einer linearen Abhängigkeit, d.h. du musst die betreffende Lösungsmenge in Abhängigkeit eines freien Parameters explizit angeben.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]