matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Gleichungssystem
Gleichungssystem < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: vorteilhaftes Verfahren
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 25.11.2011
Autor: Kerkeling01

Mein Sohn hat in einer Klassenarbeit folgende Aufgabe zu lösen:
Bestimme jeweils die Lösung des Gleichungssystems.
Wende ein vorteilhaftes verfahren an.
3x+2y=19
^
-6x-4y=-38

Hier hat mein mathematisches Verständnis versagt.
Kann mir jemand den Weg zur Lösung erklären?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Fr 25.11.2011
Autor: abakus


> Mein Sohn hat in einer Klassenarbeit folgende Aufgabe zu
> lösen:
>  Bestimme jeweils die Lösung des Gleichungssystems.
>  Wende ein vorteilhaftes verfahren an.
>  3x+2y=19
>  ^
>  -6x-4y=-38
>  
> Hier hat mein mathematisches Verständnis versagt.
>  Kann mir jemand den Weg zur Lösung erklären?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Hallo,
nicht unbedingt vorteilhaft, aber fast immer anwendbar ist das Einsetzungsverfahren. Eine der beiden Gleichungen (z.B. die erste) wird nach einer der beiden vorkommenden Variablen (z.B. nach y) aufgelöst.
Das ergibt
y=9,5-1,5x
Das kann man jetzt in die zweite Gleichung einsetzen, dabei wird aus
-6x-4y=-38
die neue Gleichung
-6x-4(9,5-1,5x)=-38 , die nur noch eine Unbekannte enthält und gelöst werden kann.

Vorteilhafter wäre allerdings, in
3x+2y=19
-6x-4y=-38

die zweite Gleichung durch beidseitige Division durch 2 in
-3x-2y=-19 abzuändern.
Die beiden Gleichungen
3x+2y=19
und -3x-2y=-19
kann man jetzt addieren und erhält
- oh, jetzt sehe ich, was los ist-
0=0
Das Gleichungssystem ist gar nicht eindeutig lösbar, weil es im Prinzip nur aus der 1. Gleichung besteht (die zweite Gleichung ist nur das (-2)-fache der ersten).
Damit hat das Gleichungssystem unendlich viele Lösungen.
Für x kann man eine beliebige reelle Zahl t einsetzen, und wegen y=9,5-1,5x ist dann y= 9,5-1,5t.
Lösung sind alle Paare (x;y)=( t; 9,5-1,5*t).
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]