matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenGleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Nichtlineare Gleichungen" - Gleichungssystem
Gleichungssystem < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 15.06.2011
Autor: Fincayra

Aufgabe
Gleichungssystem:
8x - 3y - 2xz = 0
-3x - 2yz = 0
x² + y² = 1

Hi,

die eigentliche Aufgabe lautet zwar anders, aber das einzige Problem besteht darin dieses blöde Gleichungssystem zu lösen. z wird nicht benötigt, nur x und y ; )

Für x hab ich schonmal x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm] weiß aber nicht, ob es richtig ist. Für y komm ich damit auf keinen grünen Zweig, es soll angeblich 1/2 rauskommen : /

Lieben Gruß
Fin

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 15.06.2011
Autor: Diophant

Hallo,

ich weiß nicht genau, wie du vorgegangen bist. Ich würde die beiden ersten Gleichungen nach z auflösen und gleichsetzen. Dadurch bekommst du ein nichtlineares System für x und y, welches man sehr leicht auf eine biquadratische Gleichung für x reduzieren kann, der Rest ist dann einfach.

Gruß, Diophant

Bezug
                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 15.06.2011
Autor: Fincayra

Hi

Danke erstmal für die schnelle Antwort. Ich habe die ersten beiden Gleichungen nach z aufgelöst und gleichgesetzt. "Unterwegs" hab ich mal für x² = 1 - y² eingesetzt und bin damit auf die Glg für x gekommen. Für y hatte ich dann ein biquadratisches Gleichungssystem, aber die Ergebnisse waren "eklig" ^^

Gleichgesetzt hab ich das raus: 4 - [mm]\bruch{3y}{2x}[/mm] = [mm]\bruch{-3x}{2y}[/mm]
das mit 2xy multipliziert: 8xy - 3y² = -3x² => 8xy + 3x² = 3y²
und dann x² = y - 1 eingesetzt. So bin ich auf mein x gekommen ^^

Meine biquadratische Gleichung war dann [mm] y^4 [/mm] - [mm]\bruch{88}{25}[/mm]y² + [mm]\bruch{9}{100}[/mm]
Aber ich glaub spätestens hier ist es falsch ._.

Lieben Gruß
Fin

Bezug
                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Mi 15.06.2011
Autor: MathePower

Hallo Fincayra,


[willkommenmr]


> Hi
>  
> Danke erstmal für die schnelle Antwort. Ich habe die
> ersten beiden Gleichungen nach z aufgelöst und
> gleichgesetzt. "Unterwegs" hab ich mal für x² = 1 - y²
> eingesetzt und bin damit auf die Glg für x gekommen. Für
> y hatte ich dann ein biquadratisches Gleichungssystem, aber
> die Ergebnisse waren "eklig" ^^
>  
> Gleichgesetzt hab ich das raus: 4 - [mm]\bruch{3y}{2x}[/mm] =
> [mm]\bruch{-3x}{2y}[/mm]
>  das mit 2xy multipliziert: 8xy - 3y² = -3x² => 8xy +

> 3x² = 3y²
>  und dann x² = y - 1 eingesetzt. So bin ich auf mein x
> gekommen ^^
>  
> Meine biquadratische Gleichung war dann [mm]y^4[/mm] -
> [mm]\bruch{88}{25}[/mm]y² + [mm]\bruch{9}{100}[/mm]
>  Aber ich glaub spätestens hier ist es falsch ._.


Ja, das ist falsch.

Poste Deine Rechenschritte bis dahin.


>  
> Lieben Gruß
>  Fin



Gruss
MathePower

Bezug
                                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 15.06.2011
Autor: Fincayra

Hi

Ist das was ich für x raushab denn noch richtig?

x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm]

([mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm])² = 1 - y²

ausmultiplizieren: [mm]\bruch{9}{16}[/mm]y² - [mm]\bruch{18}{4}[/mm] + [mm]\bruch{9}{64y²}[/mm] = 1 - y²

1 - y² nach links gebracht und mit y² multipliziert: [mm]\bruch{25}{16}[/mm][mm] y^4 [/mm] - [mm]\bruch{11}{2}[/mm]y² + [mm]\bruch{9}{64}[/mm] = 0

und dann y² = k gesetzt, für die gute alte p-q-Formel...

Wär echt mal schön wenn jemand ne Lösung hat und die mir nennen würde. Wir haben heut schon zu 5. in der uni daran rumgebastelt und keiner hat das Ergebnis raus, was der Rechner sagt. Wir kommen uns echt veräppelt vor ^^

Bezug
                                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 15.06.2011
Autor: MathePower

Hallo Fincayra,

> Hi
>  
> Ist das was ich für x raushab denn noch richtig?
>  
> x = [mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm]


Wenn dieses x daraus resultiert, was Du im letzten Post
durch Gleichsetzen bekommen hast, dann ist das schon
falsch.
(Auflösen der beiden ersten Gleichungen nach z und gleichsetzen)


Es ergibt sich hier eine quadratische Gleichung,
die zwei Lösungen hat.
Die Lösungen haben die Form x=c*y.


>  
> ([mm]\bruch{3}{4}[/mm]y - [mm]\bruch{3}{8y}[/mm])² = 1 - y²
>  
> ausmultiplizieren: [mm]\bruch{9}{16}[/mm]y² - [mm]\bruch{18}{4}[/mm] +
> [mm]\bruch{9}{64y²}[/mm] = 1 - y²
>  
> 1 - y² nach links gebracht und mit y² multipliziert:
> [mm]\bruch{25}{16}[/mm][mm] y^4[/mm] - [mm]\bruch{11}{2}[/mm]y² + [mm]\bruch{9}{64}[/mm] = 0
>  
> und dann y² = k gesetzt, für die gute alte p-q-Formel...
>  
> Wär echt mal schön wenn jemand ne Lösung hat und die mir
> nennen würde. Wir haben heut schon zu 5. in der uni daran
> rumgebastelt und keiner hat das Ergebnis raus, was der
> Rechner sagt. Wir kommen uns echt veräppelt vor ^^


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]