matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Gleichungssystem
Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:52 So 26.11.2006
Autor: Soonic

Aufgabe
[mm] \wurzel[3]{7+5\wurzel{2}}+\wurzel[3]{7-5\wurzel{2}}=2 [/mm]

Mein Lösungsweg:

Ich mache aus den Wurzeln Potenzen.

[mm] 7^{1/3}+(5*(\wurzel{2})^{1/3})+7^{1/3}-(5*(\wurzel{2})^{1/3})=2 [/mm]
[mm] 7^{1/3}+7^{1/3}=2 [/mm] weil sich ja [mm] (5*(\wurzel{2})^{1/3}) [/mm] und [mm] -(5*(\wurzel{2})^{1/3}) [/mm] gegenseitig eliminiert. Aber meine Lösung ergibt keine 2.

Über eine Antwort würde ich mich sehr freuen. Danke

        
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 So 26.11.2006
Autor: seifisun

Das mit den Potenzen an sich klingt ja nicht schlecht, was du da gemacht hast, beinhaltet jedoch noch nen kleinen aber folgenschweren Fehler:

Nehmen wir mal die Formel [mm]\wurzel{a^2+b^2}[/mm] mit [mm]a=3[/mm] und [mm]b=4[/mm] als Beispiel. Nach deiner Rechnung unten folgt nun :

[mm]\wurzel{a^2+b^2}=(a^2+b^2)^{\bruch{1}{2}} = a^{2* \bruch{1}{2}} + b^{2* \bruch{1}{2}} = a + b[/mm].
Am Beispiel : [mm]\wurzel{9+16} = 3 + 4 = 7[/mm]

Ums kürzer zu formulieren (falls ich mit dem Beispiel dich verwirrt haben sollte) - du kannst die Potenz nicht einfach mit in die Summanden reinziehen.

Bezug
                
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 So 26.11.2006
Autor: mathemak

Hallo!

Schon mal darüber nachgedacht, dass der zweite Radikand negativ ist?

Gruß

mathemak

Bezug
                        
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 So 26.11.2006
Autor: seifisun

Hatt ich vorns auch grad gedacht, aber wenn du z.B. [mm]\wurzel[3]{-8}[/mm] nimmst, gibt es mit -2 ja auch eine nicht-komplexe Lösung dieser fiesen Wurzel.


Ich wäre dafür, wir nutzen so eine Art binomische Formel, welche aus a und b nun [mm]a^3-b^3[/mm] macht, ich meine mich zu erinnern, dass wir das vor eins, zwei Wochen in Analysis auch so gemacht haben.

Bezug
                                
Bezug
Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Mo 27.11.2006
Autor: mathemak

Hallo!

[mm] $x^3=-8$ [/mm] hat die Lösung $x=-2$, da [mm] $(-2)^3=-8$. [/mm]

Das mit der Wurzel ist unschön.

Gruß

mathemak

Bezug
        
Bezug
Gleichungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Di 28.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]