matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGleichungen lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Gleichungen lösen
Gleichungen lösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Fr 08.08.2008
Autor: Mandy_90

Hallo^^

Ich hab hier 2 Gleichungen zu lösen,weiß aber nicht ob das so richtig ist  ???

1) [mm] z^{4}+8z^{2}+16=0 [/mm]
  Substitution: [mm] x=z^{2} [/mm] -->  [mm] x^{2}+8x+16=0 [/mm]    x=-4

Wenn ich jetzt einsetze in [mm] x=z^{2} [/mm] geht das doch gar nicht,es gibt doch keine Zahl bei der,wenn sie quadriert wird, eine negative Zahl raus kommt.
Ist diese Aufgabe dann schon hier gelöst???


2) [mm] a^{3}=3a-2 [/mm]

Bei dieser hab schon viel "rumexperimentiert",aber wegen der -2 komm ich auf kein Ergebniss.
Vielleicht kann mir jemand nen Tipp wegen,wie ich da vorgehen könnte?

lg

        
Bezug
Gleichungen lösen: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 16:57 Fr 08.08.2008
Autor: Loddar

Hallo Mandy!


Die Aufgabe ist hier zu Ende. Denn in [mm] $\IR$ [/mm] gibt es keine Lösung.


Gruß
Loddar


Bezug
        
Bezug
Gleichungen lösen: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 17:07 Fr 08.08.2008
Autor: MathePower

Hallo Mandy_90,

> Hallo^^
>  
> Ich hab hier 2 Gleichungen zu lösen,weiß aber nicht ob das
> so richtig ist  ???


> 2) [mm]a^{3}=3a-2[/mm]
>  
> Bei dieser hab schon viel "rumexperimentiert",aber wegen
> der -2 komm ich auf kein Ergebniss.
>  Vielleicht kann mir jemand nen Tipp wegen,wie ich da
> vorgehen könnte?

Eine Lösung dieser Gleichung sieht man sofort: a=1.

Um die anderen Lösungen zu ermitteln, kannst Du dann eine Polynomdivision durchführen.

[mm]\left(a^{3}-3a+2\right):\left(a-1\right)= \dots [/mm]

Für das Lösen von quadratischen Polynomen sind die einschlägigen Lösungsformeln (PQ-Formel, ABC-Formel) ja bekannt.


>  
> lg  


Gruß
MathePower

Bezug
                
Bezug
Gleichungen lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Sa 09.08.2008
Autor: Mandy_90

Stimmt ja,ich bergess jedes mal dass es noch die Polynomdivision gibt.

Aber irgendwie ist das ein bischen komisch bei dieser Aufgabe.
Also...

[mm] (a^{3}-3a+2):(a-1)=a^{2} [/mm]
[mm] -a^{3}-a^{2} [/mm]
             [mm] 3a+a^{2} [/mm]


wie soll ich denn hier weiterrechen,wodurch soll ich denn hier dividieren???

Bezug
                        
Bezug
Gleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 09.08.2008
Autor: MathePower

Hallo Mandy_90,


> Stimmt ja,ich bergess jedes mal dass es noch die
> Polynomdivision gibt.
>  
> Aber irgendwie ist das ein bischen komisch bei dieser
> Aufgabe.
>  Also...
>  
> [mm](a^{3}-3a+2):(a-1)=a^{2}[/mm]
>  [mm]-a^{3}-a^{2}[/mm]
>               [mm]3a+a^{2}[/mm]
>  
>
> wie soll ich denn hier weiterrechen,wodurch soll ich denn
> hier dividieren???

Zunächst einmal mußt Du rechnen:

[mm](a^{3}-3a+2):(a-1)=a^{2}+ \dots[/mm]
[mm]-\red{\left(}a^{3}-a^{2}\red{\right)}[/mm]
[mm]=a^{2}\red{-}3a[/mm]

Jetzt schaust Du wie oft [mm]\left(a-1\right)[/mm] in [mm]\left(a^{2}-3a\right)[/mm] geht. Dann bleibt wieder ein Rest übrig.

Dieser Rest ist wiederum ohne Rest durch [mm]\left(a-1\right)[/mm] teilbar.

Dann hast Du das quadratisches Polynom, deren Lösungen noch zu ermitteln sind.

Gruß
MathePower

Bezug
                                
Bezug
Gleichungen lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 So 10.08.2008
Autor: Mandy_90

okay ich hab dann [mm] a^{2}+a-2 [/mm] raus.Und wenn ich das mit der pq-Formel berechne komme ich auf [mm] x_{1}=1 [/mm] und [mm] x_{2}=-2 [/mm]

Stimmt das jetztz so?

Bezug
                                        
Bezug
Gleichungen lösen: Richtig!
Status: (Antwort) fertig Status 
Datum: 13:45 So 10.08.2008
Autor: Loddar

Hallo Mandy!

Wenn Du schreibst [mm] $\red{a}_1 [/mm] \ = \ 1$ und [mm] $\red{a}_2 [/mm] \ = \ -2$ , stimmt es.
Und nicht die dritte Lösung mit $a _3 \ = \ 1$ vergessen ($a \ = \ 1$ ist also doppelte Nullstelle).


Gruß
Loddar


Bezug
                                                
Bezug
Gleichungen lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 So 10.08.2008
Autor: Mandy_90

Hab nochmal ne Frage,wie kommst du auf a=21???

Bezug
                                                        
Bezug
Gleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 So 10.08.2008
Autor: steppenhahn

Hallo!

Loddar hat sich sicher nur verschrieben, er meinte dass

a = 1 eine doppelte Nullstelle ist (weil [mm] a_{1} [/mm] = 1 und [mm] a_{3} [/mm] = 1 als Lösungen der Gleichung herausgekommen sind).

Stefan.

Bezug
        
Bezug
Gleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 10.08.2008
Autor: Al-Chwarizmi

Zu Aufgabe 1) :

Die Variable  z  deutet darauf hin, dass es sich
um eine Gleichung im Bereich der komplexen
Zahlen handeln könnte (habt ihr die behandelt ?).

Dann gibt es durchaus Lösungen, nämlich

       [mm] z_1=2*i [/mm]  und  [mm] z_2=-2*i [/mm]   !


LG

Bezug
                
Bezug
Gleichungen lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 So 10.08.2008
Autor: Mandy_90

Danke für den Hinweis,aber die komplexen Zahlen hatten wir noch nicht.
Was ist das denn und warum gibt es dann doch 2 Lösungen?
Das würde mich jetzt echt interessieren.


lg

Bezug
                        
Bezug
Gleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 So 10.08.2008
Autor: schachuzipus

Hallo Mandy,

die komplexen Zahlen sind eine Erweiterung der reellen Zahlen.

Die hat man "ausgetüftelt", um auch Gleichungen der Art [mm] $x^2+1=0$, [/mm] also [mm] $x^2=-1$ [/mm] lösen zu können.

In [mm] $\IR$ [/mm] hat diese Gleichung ja keine Lösungen ...

Man führt zusätzlich die sog. imaginäre Einheit $i$ (manchmal auch mit $j$ bezeichnet) ein, die die Eigenschaft [mm] $i^2=-1$ [/mm] hat, so dass die obige Gleichung [mm] $x^2=-1=i^2$ [/mm] doch Lösungen hat, nämlich [mm] $x_1=+i, x_2=-i$ [/mm]

Wenn du an genaueren Details zu den komplexen Zahlen interessiert bist, schaue doch mal []hier oder []hier nach ...


Für deine resubstituierte Gleichung aus Aufgabe 1 (ganz am Schluss) heißt das:

[mm] $x^2=-4=i^2\cdot{}4=2^2\cdot{}i^2=(2i)^2 [/mm] \ \ [mm] \mid\sqrt{...}$ [/mm]

[mm] $\Rightarrow x_{1,2}=\pm 2\cdot{}i$ [/mm]

LG

schachuzipus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]