matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungen aus einem Sachtext
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Gleichungen aus einem Sachtext
Gleichungen aus einem Sachtext < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen aus einem Sachtext: Lösung
Status: (Frage) beantwortet Status 
Datum: 15:08 Do 16.10.2008
Autor: karatehamster

Aufgabe
Wenn man die beiden Zahlen 313 und 390 durch die gleiche zweistellige natürliche Zahl dividiert, so erhält man den gleichen Rest.
Wie lautet diese zweistellige natürliche Zahl als Divisor.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab schon sehr lange vor dieser Aufgabe gesessen aber bekomm einfach nicht die Gleichungen dafür raus.
Ich habe so angefangen
X=390-313

[mm] Z=\bruch{313-y}{x} [/mm]

[mm] a=\bruch{390-y}{x} [/mm]

Also ich habe folgendes Problem: ich habe von anfang an den divisor herausgefunden (zufällig siehe x), jetzt weiß ich nicht ob ich das so machen darf oder die Gleichung zur Berechnung siehe x einfach nur ein dummer Zufall ist.
Und mein letztes Problem ist wie ich y definieren könnte (quasi den rest), dafür fällt mir einfach keine Gleichung ein und ich habe wirklich ewig mein kopf drüber zerbrochen aber naja.
Es wäre schön, wenn ihr diese Aufgabe lösen könntet...
Gruß Daniel


        
Bezug
Gleichungen aus einem Sachtext: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 16.10.2008
Autor: Sigrid

Hallo Daniel

> Wenn man die beiden Zahlen 313 und 390 durch die gleiche
> zweistellige natürliche Zahl dividiert, so erhält man den
> gleichen Rest.
>  Wie lautet diese zweistellige natürliche Zahl als
> Divisor.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich hab schon sehr lange vor dieser Aufgabe gesessen aber
> bekomm einfach nicht die Gleichungen dafür raus.
>  Ich habe so angefangen
>  X=390-313

Die zweistelllige Zahl kann 390-313 sein, aber auch ein Teiler davon.

>  
> [mm]Z=\bruch{313-y}{x}[/mm]
>  
> [mm]a=\bruch{390-y}{x}[/mm]

Jetzt sieh Dir mal  $ a - z $ an und beachte, dass $ a - z $ eine natürliche Zahl ist.

Ich höre hier mal auf. Vielleicht findest Du ja jetzt schon die Lösungen.

Gruß
Sigrid

>  
> Also ich habe folgendes Problem: ich habe von anfang an den
> divisor herausgefunden (zufällig siehe x), jetzt weiß ich
> nicht ob ich das so machen darf oder die Gleichung zur
> Berechnung siehe x einfach nur ein dummer Zufall ist.
>  Und mein letztes Problem ist wie ich y definieren könnte
> (quasi den rest), dafür fällt mir einfach keine Gleichung
> ein und ich habe wirklich ewig mein kopf drüber zerbrochen
> aber naja.
>  Es wäre schön, wenn ihr diese Aufgabe lösen könntet...
>  Gruß Daniel
>  


Bezug
                
Bezug
Gleichungen aus einem Sachtext: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Do 16.10.2008
Autor: karatehamster

Meinst du jetzt ich soll z.B. [mm] \bruch{390}{a} [/mm] und [mm] \bruch{313}{z} [/mm]
das geht ja nicht weil den ja eine Zahl mit einem Komma rauskommt und ich muss ja vorher die Zahl mit den rest suptrahieren.
Also könnte ich die Gleichung höchstens so umformen
[mm] x=\bruch{313-y}{z} [/mm]
und
[mm] x=\bruch{390-y}{a} [/mm]
Aber es ist auch gut möglich das ich dich jetzt nicht verstanden habe und das du was anderes meinst....

Bezug
                        
Bezug
Gleichungen aus einem Sachtext: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Fr 17.10.2008
Autor: Sigrid

Hallo Daniel,

> Meinst du jetzt ich soll z.B. [mm]\bruch{390}{a}[/mm] und
> [mm]\bruch{313}{z}[/mm]
>  das geht ja nicht weil den ja eine Zahl mit einem Komma
> rauskommt und ich muss ja vorher die Zahl mit den rest
> suptrahieren.
>  Also könnte ich die Gleichung höchstens so umformen
> [mm]x=\bruch{313-y}{z}[/mm]
>  und
>  [mm]x=\bruch{390-y}{a}[/mm]
>  Aber es ist auch gut möglich das ich dich jetzt nicht
> verstanden habe und das du was anderes meinst....

Da hast Du mich wohl falsch verstanden. Du hattest ja:

$ [mm] Z=\bruch{313-y}{x} [/mm] $

$ [mm] a=\bruch{390-y}{x} [/mm] $

Dabei sind z und a natürliche Zahlen. Jetzt rechnest Du:

$ a - z =  [mm] \bruch{390-y}{x} [/mm] - [mm] \bruch{313-y}{x} [/mm] $

$ = [mm] \bruch{390-313}{x} [/mm] $

$ = [mm] \bruch{77}{x} [/mm] $

a-z ist eine natürliche Zahl, also ist x ein Teiler von 77. Da x zweistellig sein soll, ergeben sich die Lösungen $ x= 77 [mm] \vee [/mm] x = 11 $

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]