matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGleichungen/Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Gleichungen/Ungleichungen
Gleichungen/Ungleichungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen/Ungleichungen: "Korrektur", "Lösungen"
Status: (Frage) beantwortet Status 
Datum: 16:44 Di 04.11.2014
Autor: unfaehik

Aufgabe 1
Zeigen Sie: Für alle n [mm] \in [/mm] N gilt: 3 > (1 + [mm] \bruch{1}{n})^n \ge [/mm] 2.


Aufgabe 2
Für n reele Zahlen [mm] x_1,....,x_n \in \IR [/mm] definieren wir:
[mm] x_a(n) [/mm] = [mm] \bruch{x_1+....+x_n}{n} [/mm]

Sind alle [mm] x_i [/mm] nichtnegativ sind, so setzen wir außerdem:
[mm] x_g(n) [/mm] = [mm] \wurzel[n]{x_1*....*x_n} [/mm]

Zeigen Sie: Existiert [mm] x_g(n), [/mm] so gilt die Ungleichung [mm] x_a(n) \ge x_g(n). [/mm]


Aufgabe 3
Seien [mm] x_1,...,x_n,y_1,....,y_n \in \IR. [/mm] Beweisen Sie die Ungleichung

[mm] (\summe_{i=1}^{n}x_i*y_i)^2 \le (\summe_{i=1}^{n}x_i^2) [/mm] * [mm] (\summe_{i=1}^{n}y_i^2) [/mm]


Nr 1 hab ich so gelöst:
Anname: (1 + [mm] \bruch{1}{n})^n \le [/mm] 2
n = 1
2 = 2
n = 2
2,25 = 2 <-- Widerspruch

Annahme: (1 + [mm] \bruch{1}{n})^n [/mm] > 3
n = 1
2 > 3 <--- Widerspruch

Wenn man [mm] \limes_{n\rightarrow\infty} [/mm] setzt kriegt man für (1 + [mm] \bruch{1}{n})^n [/mm] einen Wert zwischen 2 und 3.

Wäre die erste Aufgabe so gelöst ? Wenn nein, wie ist dann die Lösung?
---------------------------------------------------------
Nr 2 hab ich so gelöst:

Annahme [mm] x_a(n) [/mm] = [mm] x_g(n) [/mm]
[mm] x_a(n) [/mm] = [mm] x_g(n) [/mm]       | *n  | quadrieren

[mm] (x_1+...+x_2)^n [/mm] = [mm] x_1*....*x_n*n [/mm]
n = 1
Dann haben wir: [mm] (x_1)^1 [/mm] = [mm] x_1 [/mm] * 1 = [mm] x_1 [/mm]
n = 2
[mm] (x_1+x_2)^2 [/mm] = [mm] x1_*x_2*2 [/mm]
[mm] x_1^2+2*x_1*x_2+x_2^2 [/mm] = [mm] x_1*x_2*2 [/mm]
[mm] x_1^2+x_2^2 [/mm]  + [mm] 2*x_1*x_2 [/mm] = [mm] 2*x_1*x_2 [/mm] <--- Nicht gleich. Linke Seite ist größer.
Wäre die Aufgabe so gelöst ? Wenn nein, wie ist dann die lösung ?

----------------------------

Aufgabe 3 habe ich so gelöst:
Ich habe angenommen beide Seiten sind gleich. Dann hab ich durch [mm] x_i [/mm] und [mm] y_i [/mm] geteilt und die gleichung sah dann so aus:

[mm] (\summe_{i=1}^{n}1)^2 [/mm] = [mm] (\summe_{i=1}^{n}x_i) [/mm] * [mm] (\summe_{i=1}^{n}y_i) [/mm] <--- Man sieht es ist nicht gleich sondern sieht so aus:
[mm] (\summe_{i=1}^{n}1)^2 \le (\summe_{i=1}^{n}x_i) [/mm] * [mm] (\summe_{i=1}^{n}y_i) [/mm]

Wäre die Aufgabe so richtig gelöst ? Wenn nein, wie ist dann die Lösung ?

        
Bezug
Gleichungen/Ungleichungen: Aufgabe 1 ; Zusammenhang ?
Status: (Antwort) fertig Status 
Datum: 17:45 Di 04.11.2014
Autor: Al-Chwarizmi

Hallo,

mal die erste Aufgabe:

> Zeigen Sie: Für alle n [mm]\in[/mm] N gilt:

>       $\ 3\ >\ \ [mm] \underbrace{(1\ + \ \bruch{1}{n})^n}_{T_n}\ [/mm] \ [mm] \ge\ [/mm] 2$

  

> Nr 1 hab ich so gelöst:
>  Annahme: (1 + [mm]\bruch{1}{n})^n \le[/mm] 2    [haee]

Willst du also einen Beweis durch Widerspruch führen ?
Dann beachte:  die Negation von  $\ [mm] T_n\ \ge\ [/mm] 2$  lautet nicht
$\ [mm] T_n\ \le\ [/mm] 2$  ,  sondern   $\ [mm] T_n\ [/mm] < \ 2$   !

>  n = 1
>  2 = 2

( kein Widerspruch zu  $\ [mm] T_n\ \le\ [/mm] 2 $  !! )

Damit wäre deine Art des Widerspruchsbeweises schon
bei n=1 gescheitert ...

>  n = 2
>  2,25 = 2 <-- Widerspruch

Na gut, für n=2 klappt's zwar, aber dann bleiben noch
weitere unendlich viele n-Werte zu prüfen !

Also dieser Teil des Beweises klappt offenbar so nicht.
Es wäre jedoch sehr nützlich, wenn du eine wichtige
Eigenschaft der Folge  $\ [mm] <\,T_n\, >_{n\in\IN}$ [/mm]  nachweisen könntest,
nämlich ihre Monotonieeigenschaft !




> Annahme: (1 + [mm]\bruch{1}{n})^n[/mm] > 3

Auch hier: das Gegenteil von  $\ [mm] T_n\ [/mm] <\ 3$  wäre nicht  $\ [mm] T_n\ [/mm] >\ 3$ ,
sondern  $\ [mm] T_n\ \ge\ [/mm] 3$

>  n = 1
>  2 > 3 <--- Widerspruch

Auch hier:  du weist hier nur ein einziges n, nämlich n=1
vor, für welches die Ungleichung  $\ [mm] T_n\ [/mm] <\ 3$  gilt,
aber es ist viel, viel mehr zu zeigen, nämlich dass die
Ungleichung  $\ [mm] T_n\ [/mm] <\ 3$  für alle natürlichen Zahlen
n gültig ist.

> Wenn man [mm]\limes_{n\rightarrow\infty}[/mm] setzt kriegt man für
> (1 + [mm]\bruch{1}{n})^n[/mm] einen Wert zwischen 2 und 3.

(Das trifft zwar zu; nachgewiesen hast du dies aber
bei Weitem nicht ...)

Der gefragte Beweis ist nicht ganz einfach, aber er
spielt eine ganz wichtige Rolle bei der Einführung der
Basis e der natürlichen Logarithmen.  Meistens wird auch
nicht erwartet, dass Studenten diesen Beweis ohne
gewisse vorbereitende oder darauf hinführende Übungen
alleine schaffen.
Deshalb möchte ich jetzt auch mal zurückfragen: in
welchem Zusammenhang musst du diesen Beweis
führen ? Welche Grundlagen stehen zur Verfügung ?

LG ,   Al-Chwarizmi

Bezug
        
Bezug
Gleichungen/Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Di 04.11.2014
Autor: Marcel

Hallo,

> Zeigen Sie: Für alle n [mm]\in[/mm] N gilt: 3 > (1 + [mm]\bruch{1}{n})^n \ge[/mm] 2.

Al hat ja schon was dazu gesagt, vielleicht noch ein Hinweis:
Monotonie kannst Du hier mit "geeigneter Quotientenbetrachtung" beweisen,
und dabei wird auch Bernoulli eine Rolle spielen.
Ob Du da von alleine drauf kommst, weiß ich nicht, ich kann Dir aber durchaus
ein Skript verlinken, wo Du die Rechnung dann wenigstens selber drin suchen
solltest und auch versuchen solltest, die Vorgehensweise nachzuvollziehen.

Auch die Abschätzung

    [mm] $(1+1/n)^n [/mm] < 3$

ist, sofern man nicht schon mit [mm] $e\,$ [/mm] und einem Näherungswert für [mm] $e\,$ [/mm] argumentieren
darf, durchaus trickreich.

Eine mögliche Methode, das einzusehen, ist:
Betrachte

    [mm] $(b_n)_{n \in \IN}$ [/mm]

definiert durch

    [mm] $b_n=(1+1/n)^{n\red{\,+1\,}}\,.$ [/mm]

Begründe

    [mm] $a_n \le b_n$ [/mm] für alle [mm] $n\,$ [/mm] (das ist trivial)

und zeige, dass [mm] $(b_n)_{n \in \IN}$ [/mm] monoton fallend ist.

Insbesondere sieht man dann schlussendlich

    [mm] $a_n \le b_n \le b_{n-1} \le [/mm] ... [mm] \le b_2 \le b_1=1,5^3\,.$ [/mm]

Das ist zwar nicht ganz das, was Du haben willst (Du willst "mehr"), aber
mit ein wenig nachdenken siehst Du, wie Du dennoch mit dieser Methode
an das gewünschte Ziel kommst (man sollte halt nicht bis [mm] $b_1$ [/mm] gehen,
sondern ... und die endlich vielen [mm] $a_k$ [/mm] ($k=1,...,n-1$)  für die man dann die zu beweisende
Aussage (vielleicht?) noch nicht nachgewiesen hat, könnte man entweder nochmal
separat von Hand ausrechnen, oder man guckt nach, ob sie vielleicht nicht
doch schon erfasst worden sind, wenn man die Monotonie-Eigenschaft von
[mm] $(a_n)$ [/mm] bewiesen hat!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]