matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Gleichungen
Gleichungen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Modulus
Status: (Frage) beantwortet Status 
Datum: 11:42 So 10.01.2010
Autor: AnikaBrandes

Hi,leute
ich habe die Rechneung mit dem modulus igendwie noch immer nicht verstanden.
Könnte einer von euch mir ausführlich erklären wie das geht?
z.B an dieser Gleichung:
[mm] 7x-5\equiv6 [/mm] mod 13

Danke

        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 So 10.01.2010
Autor: Sax

Hi,


>  [mm]7x-5\equiv6[/mm] mod 13

Die Gleichung bedeutet, dass wir eine Zahl x suchen, so dass 7x-5 bei Division durch 13 den Rest 6 lässt.
Modulo-Rechnung bedeutet, dass wir uns immer nur für den Rest interessieren, der bei Division durch den Modulus übrig bleibt.

In "normalen" Zahlen sähe die Rechnung doch folgendermaßen aus :
7x - 5  = 6    I  +5
7x      = 11   I  *(1/7)
x       = 11/7

Die Rechnung geht hier genauso, dass Problem ist, 1/7 zu finden.
1/7 ist doch diejenige Zahl mit der Eigenschaft, dass 1/7 * 7  =  1  ist.
In der Modulo-Rechnung müssen wir also eine Zahl finden, die mit 7 multipliziert bei Division durch 13 den Rest 1 lässt.
Das geht so :
7 und 13 haben den ggT 1, und der lässt dich mit Hilfe des Euklidischen Algorithmus als Summe von 7en und 13en darstellen :
13 = 1*7 + 6
7 = 1*6 + 1
also ist 1 = 7 - 1*6 = 7 - 1* (13-1*7)  =  -1*13 + 2*7

(Noch ein Beispiel :
gesucht ist ggT(474 , 87) und eine Darstellung

474 = 5*87 + 39
87 = 2*39 + 9
39 = 4*9 + 3
9 = 3*3 + 0

Der letzte Rest, der nicht Null ist, ist der ggT, hier 3.
Von unten nach oben :
3 = 39 - 4*9 = 39 - 4*(87 - 2*39) = (474-5*87)  -  4*(87 - 2*(474-5*87))
  =  474 - 5*87 - 4*87 + 8*474 - 40*87  =  9*474 - 49*87)

Zurück zu unserer Aufgabe :
Weil 1 = -1*13 + 2*7 ist, ist 1/7 [mm] \equiv [/mm] 2 mod 13.

Die Rechnung modulo 13 geht also so :

7x - 5 [mm] \equiv [/mm] 6   I +5
7x     [mm] \equiv [/mm] 11  I *2
x      [mm] \equiv [/mm] 22  
       [mm] \equiv [/mm]  9

Probe :
7*9 - 5  =  63 - 5  =  58  und 58 : 13 = 4 Rest 6.

Gruß Sax.



Bezug
                
Bezug
Gleichungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:41 So 10.01.2010
Autor: AnikaBrandes

Boaa!Genial,
Hab eigentlich alles verstanden bis auf,
  

> 7x - 5 [mm]\equiv[/mm] 6   I +5
>  7x     [mm]\equiv[/mm] 11  I *2
>   x      [mm]\equiv[/mm] 22  
> [mm]\equiv[/mm]  9

auf die 2 kommst du wahrscheinlich weil   =  -1*13 + 2*7
Wie kommst du jedoch dann auf 9?

Wie sieht es z.B bei diesen Aufgaben aus:

[mm] (2k)^{2} [/mm] mod 4  &   [mm] (2k+1)^{2} [/mm] mod 4?

Anika

Bezug
                        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 So 10.01.2010
Autor: Sax

Hi,
die 9 ergibt sich, weil 22 : 13 = 1 Rest 9 ist.
Hab' für den Rest jetzt leider keine Zeit mehr, vielleicht jemand anderes.
Gruß Sax.

Bezug
                        
Bezug
Gleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 12.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]