matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Gleichungen
Gleichungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Sa 19.05.2007
Autor: Ares1804

Aufgabe
Wenn p eine Primzahl ist und a,b natürliche (d.h. positive ganze ~) Zahlen sind, dann folgt aus
[mm] 2^p+3^p=a^n [/mm] , dass n=1 gilt

b) Für welche Werte aus [mm] \IZ [/mm] hat die Gleichung
[mm] x^2+axy+y^2=1 [/mm]
unendlich viele Lösungen in [mm] \IZ [/mm]

Hallo,

Mal wieder möchte ich hiermit um Hilfe bitten, denn ich habe leider gerade keine Idee für einen Ansatz.

Ich bedanke mich im Vorraus für jeden Tipp!

MfG
M.



        
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:50 So 20.05.2007
Autor: Ares1804

Oh, ich vergaß: Bei der b) sind die Werte für a aus [mm] \IZ [/mm] gesucht

Aber ich komm irgendwie nicht weiter....

Bezug
        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 So 20.05.2007
Autor: rabilein1

zu Aufgabe b):

Für a=0 ergibt sich die Gleichung: [mm] x^{2}+y^{2}=1 [/mm]
Das wäre ein Kreis, auf dem unendlich viele Punkte liegen.

Für a=1 ergibt sich die Gleichung: [mm] x^{2}+xy+y^{2}=1 [/mm]
Diese Gleichung ist erfüllt für [mm] x=y=\wurzel\bruch{1}{3} [/mm]
Wenn x einen Tick kleiner ist als [mm] \wurzel\bruch{1}{3}, [/mm] gibt es dann auch noch einen y-Wert?

Für a=-1 ergibt sich die Gleichung: [mm] x^{2}-xy+y^{2}=1 [/mm]
Diese Gleichung ist erfüllt für x=y=1
Wenn x einen Tick kleiner ist als 1, gibt es dann auch noch einen y-Wert?

Bezug
                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 20.05.2007
Autor: rabilein1

Für alle a gilt: wenn x=0, dann ist  y=1 und y=-1

Was geschieht, wenn x einen Tick von Null abweicht?
Lässt sich daraus etwas erkennen?  

Bezug
        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 20.05.2007
Autor: wauwau

bzgl a)

p=2 folgt n=1
daher ist p eine ungerade Primzahl

betrachte die Glg. modulo5
und zerlege die linke seite

[mm] 2^p+3^p=5(2^{p-1}-2^{p-2}3+2^{p-3}3^2-+......-2*3^{p-2}+3^{p-1}) [/mm]

der zweite Faktor ist  [mm] \equiv p*2^{p-1} [/mm] mod 5,

da jedoch 5 mindestens bei n>1 in mehrfachen Potenzen auftreten muss, muss der zweite Faktor ebenfalls durch 5 teilbar und daher p=5 sein.
Da für p=5 n=1 folgt (ausrechnen)
ist das gewünschte bewiesen

Bezug
        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 So 20.05.2007
Autor: wauwau

bzgl b)

Die Antworten von Rabilein sind leider falsch, da es sich um diophantische Gleichungen handelt

Bezug
                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 So 20.05.2007
Autor: rabilein1

> Die Antworten von Rabilein sind leider falsch, ...
Es mag sein, dass die Antworten unvollständig sind.
Für die angegebenen Werte (a=-1, a=0 und a=1) kommen die x-y-Werte aber so hin.

Für alle a-Werte müsste sich auf ähnliche Weise ein  x=y-Wert bestimmen lassen.  Wie das allerdings bei [mm] x\not=y [/mm] aussieht, kann ich nicht sagen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]